Câu hỏi:

16/10/2024 193

Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 2;2} \right]\) và có đồ thị trên đoạn \(\left[ { - 2;2} \right]\) như sau:

Cho hàm số  y = f ( x )  liên tục trên đoạn  [ − 2 ; 2 ]  và có đồ thị trên đoạn  [ − 2 ; 2 ]  như sau:  Tìm giá trị lớn nhất của hàm số  y = f ( x )  trên đoạn  [ − 2 ; 2 ] . (ảnh 1)

Tìm giá trị lớn nhất của hàm số \(y = f\left( x \right)\) trên đoạn \(\left[ { - 2;2} \right]\).

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Dựa vào đồ thị ta có \(\mathop {\max }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một vật chuyển động theo quy luật \(s = - \frac{1}{3}{t^3} + 6{t^2}\) với t (giây) là khoảng thời gian tính từ khi vật bắt đầu chuyển động và s (mét) là quãng đường vật di chuyển được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 9 giây kể từ khi bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?

Xem đáp án » 16/10/2024 1,022

Câu 2:

Cho hàm số \(f\left( x \right) = \frac{{{x^2} - 4x + 7}}{{x - 1}}\). Gọi \(M,\;m\) lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số trên đoạn \[\left[ {2;4} \right]\]. Tính \(M + m\) ?

Xem đáp án » 16/10/2024 445

Câu 3:

Cho hàm số \(y = f(x)\) liên tục trên đoạn \(\left[ { - 1;3} \right]\) và có bảng biến thiên như sau

Cho hàm số  y = f ( x )  liên tục trên đoạn  [ − 1 ; 3 ]  và có bảng biến thiên như sau  Giá trị lớn nhất của hàm số  y = f ( x )  trên đoạn  [ − 1 ; 3 ]  bằng (ảnh 1)

Giá trị lớn nhất của hàm số \(y = f(x)\) trên đoạn \(\left[ { - 1;3} \right]\) bằng

Xem đáp án » 16/10/2024 433

Câu 4:

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

Cho hàm số  y = f ( x )  có bảng biến thiên như sau:  Khẳng định nào sau đây đúng? (ảnh 1)

Khẳng định nào sau đây đúng?

Xem đáp án » 16/10/2024 327

Câu 5:

Giá trị nhỏ nhất của hàm số \(y = \sqrt {4 - x} + \sqrt 3 \) trên tập xác định của nó là

Xem đáp án » 16/10/2024 314

Câu 6:

Tìm giá trị lớn nhất của hàm số \(f\left( x \right) = \frac{{x - 2}}{{x + 1}}\) trên đoạn \(\left[ {0;\,2} \right]\).

Xem đáp án » 16/10/2024 291

Câu 7:

II. Thông hiểu

Cho hàm số \[y = f(x)\] liên tục trên đoạn \[\left[ { - 3;1} \right]\]và có đồ thị như hình vẽ. Gọi \[M\] và \[m\]lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \[\left[ { - 3;1} \right]\]. Giá trị của \[M - m\] bằng

Cho hàm số  y = f ( x )  liên tục trên đoạn  [ − 3 ; 1 ] và có đồ thị như hình vẽ. Gọi  M  và  m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn  [ − 3 ; 1 ] . Giá trị của  M − m  bằng (ảnh 1)

Xem đáp án » 16/10/2024 269

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store