Biểu thức \[\sqrt {\frac{{x + 1}}{{x + 2}}} \] với \(x \ge 0\) bằng với biểu thức nào sau đây?
A. \( - \frac{{x + 1}}{{\sqrt {x + 2} }}\).
B. \(\frac{{\sqrt {x + 1} }}{{x + 2}}\).
C. \(\frac{{x + 1}}{{\sqrt {x + 2} }}\).
D. \(\frac{{\sqrt {x + 1} }}{{\sqrt {x + 2} }}\).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Với \(x \ge 0\), áp dụng tính chất căn bậc hai của một thương, ta có:
\[\sqrt {\frac{{x + 1}}{{x + 2}}} = \frac{{\sqrt {x + 1} }}{{\sqrt {x + 2} }}\].
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
\(\left( {\sqrt {\frac{2}{3}} + \sqrt {\frac{{50}}{3}} - \sqrt {24} } \right) \cdot \sqrt 6 \)
\[ = \sqrt {\frac{2}{3}} \cdot \sqrt 6 + \sqrt {\frac{{50}}{3}} \cdot \sqrt 6 - \sqrt {24} \cdot \sqrt 6 \]
\( = \sqrt {\frac{2}{3} \cdot 6} + \sqrt {\frac{{50}}{3} \cdot 6} - \sqrt {24 \cdot 6} \)
\( = \sqrt 4 + \sqrt {100} - \sqrt {144} \)
\[ = 2 + 10--12 = 0.\]
Lời giải
Đáp án đúng là: A
\[\left( {1 + \sqrt {\frac{3}{5}} } \right)\left( {1 - \sqrt {\frac{3}{5}} } \right)\]
\[ = {1^2} - {\left( {\sqrt {\frac{3}{5}} } \right)^2}\]
\( = 1 - \frac{3}{5}\)\( = \frac{2}{5}\).
Suy ra \(a = 2\), \(b = 5\).
Vậy \(ab = 2.5 = 10\).
Câu 3
A. \(\sqrt 5 - 1\).
B. \(1 - \sqrt 5 \).
C. \(2\sqrt 5 - 2\).
D. \(2 - 2\sqrt 5 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\frac{{12}}{{\sqrt {{x^2} + 4} }}\).
B. \(\sqrt {\frac{2}{{{x^2} - 4}}} \).
C. \(\frac{2}{{\sqrt {x + 2} }}\).
D. \(\sqrt {\frac{2}{{x - 2}}} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\frac{a}{b}\).
B. \(\frac{{\sqrt a }}{b}\).
C. \(\frac{a}{{\sqrt b }}\).
D. \(\frac{{\sqrt a }}{{\sqrt b }}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \( - {a^2}\).
B. \({a^2}\).
C. \({a^2}{b^2}\).
D. \( - {a^2}{b^2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.