Câu hỏi:

19/12/2024 1,442

Một sợi dây thép AC có chiều dài 8 m được chia thành hai phần AB, AC (như hình vẽ minh họa dưới đây).

Mỗi phần đều được uốn thành một hình vuông. Hỏi phải chia sợi dây ban đầu như thế nào để tổng diện tích hai hình vuông thu được sau khi uốn là nhỏ nhất?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Gọi cạnh hình vuông được uốn từ đoạn AB là x (0 < x < 8, m).

Lúc này, độ dài đoạn AB chính là chu vi hình vuông đó và bằng 4x (m).

Do đó, độ dài đoạn BC là 8 – 4x (m).

Suy ra độ dài cạnh hình vuông được uốn bởi đoạn BC là \[\frac{{8 - 4x}}{4}\] = 2 – x (m).

Tổng diện tích hai hình vuông lúc này là x2 + (2 – x)2 (m2).

Ta có: x2 + (2 – x)2 = 2x2 – 4x + 4 = 2(x2 – 2x + 1) + 2 = 2(x – 1)2 + 2 ≥ 2.

Tổng diện tích hai hình vuông đạt giá trị nhỏ nhất bằng 2 m2 khi x – 1 = 0 hay

x = 1.

Khi đó, độ dài đoạn thẳng AB = 4 m và độ dài đoạn thẳng BC = 8 – 4 = 4 m hay B là trung điểm của đoạn AC.

Vậy để tổng diện tích hai hình vuông đạt giá trị lớn nhất thì ta chia đoạn dây thép thành hai phần bằng nhau AB = BC = 4 m.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Gọi x là giá mà cửa hàng phải bán để sau khi giảm giá thu được lợi nhuận cao nhất (x > 0, triệu đồng).

Theo đề, số tiền mà của hàng sẽ giảm là 22 – x (triệu đồng) mỗi chiếc.

Khi đó, số lượng máy tính tăng lên là: 50(22 – x) : 0,2 = 250(22 – x) chiếc.

Do đó, số lượng máy tính mà doanh nghiệp bán được là:

500 + 250(22 – x) = 6000 – 250x (chiếc)

Doanh thu mà cửa hàng sẽ đạt được là: (6000 – 250x)x (triệu đồng).

Tiền mà cửa hàng bỏ ra để nhập máy tính sẽ là:

18(6000 – 250x) = 108000 – 4500x (triệu đồng)

Lợi nhuận mà cửa hàng thu được sau khi bán giá mới là:

(6000 – 250x)x – 108000 + 4500x = −250x2 + 10500x – 108000 (triệu đồng).

Ta có: −250x2 + 10500x – 108000 = −250(x – 21)2 + 2250 ≤ 2250.

Dấu “=” xảy ra khi −250(x – 21)2 = 0 suy ra x – 21 = 0 khi x = 21.

Vậy cửa hàng bán với giá 21 triệu đồng thì doanh thu nhận được là lớn nhất.

Lời giải

Đáp án đúng là: B

Gọi độ dài của đoạn AE = x (0 < x < 4) (m) suy ra độ dài của đoạn

EB = 4 – x (m).

Theo đề, các phần đất hình tam giác bằng nhau, nên ta có:

AE = BH = GC = DF = x (m) và BE = CH = GD = AF = 4 – x (m).

Áp dụng định lí Pythagore vào tam giác AEF vuông tại A, ta có:

AE2 + AF2 = EF2

2x2 – 8x + 16 = EF2

Suy ra EF = \[\sqrt {2{x^2} - 8x + 16} {\rm{ }} = {\rm{ }}\sqrt {2\left( {{x^2} - 4x + 4} \right) + 8} = \sqrt {2{{\left( {x - 2} \right)}^2} + 8} \] (m).

Do các phần hình tam giác có diện tích bằng nhau nên ta có:

FG = GH = HE = EF = \[\sqrt {2{{\left( {x - 2} \right)}^2} + 8} \] (m).

Suy ra, chu vi tứ giác EFGH nhỏ nhất khi \[\sqrt {2{{\left( {x - 2} \right)}^2} + 8} \] nhỏ nhất.

Với mọi 0 < x < 4, ta có:

2(x – 2)2 ≥ 0

2(x – 2)2 + 8 ≥ 8

\[\sqrt {2{{\left( {x - 2} \right)}^2} + 8} \] ≥ \[\sqrt 8 \]

\[4\sqrt {2{{\left( {x - 2} \right)}^2} + 8} \] ≥ \[4\sqrt 8 \]

\[4\sqrt {2{{\left( {x - 2} \right)}^2} + 8} \] ≥ \[8\sqrt 2 \].

Do đó, chu vi tứ giác EFGH nhỏ nhất bằng \[8\sqrt 2 \] (m) khi x – 2 = 0 hay x = 2 (m).

Vậy khoảng cách từ A đến E bằng 2 m thì tứ giác EFGH có chu vi nhỏ nhất.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay