Câu hỏi:

19/12/2024 87

Cho bất phương trình \(\frac{{21 - x}}{{1978}} - \frac{{x - 1978}}{{21}} + \frac{{19 - x}}{{1980}} - \frac{{x - 1980}}{{19}} \ge 0\). Nghiệm nguyên lớn nhất của bất phương trình là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ta có: \(\frac{{21 - x}}{{1978}} - \frac{{x - 1978}}{{21}} + \frac{{19 - x}}{{1980}} - \frac{{x - 1980}}{{19}} \ge 0\)

Suy ra \(\frac{{21 - x}}{{1978}} + 1 - \frac{{x - 1978}}{{21}} - 1 + \frac{{19 - x}}{{1980}} + 1 - \frac{{x - 1980}}{{19}} - 1 \ge 0\)

\(\frac{{1999 - x}}{{1978}} - \frac{{x - 1999}}{{21}} + \frac{{1999 - x}}{{1980}} - \frac{{x - 1999}}{{19}} \ge 0\)

(x – 1999) \(\left( { - \frac{1}{{1978}} - \frac{1}{{21}} - \frac{1}{{1980}} - \frac{1}{{19}}} \right)\) ≥ 0.

Nhận thấy \( - \frac{1}{{1978}} - \frac{1}{{21}} - \frac{1}{{1980}} - \frac{1}{{19}}\) < 0 nên để thỏa mãn bất phương trình thì x – 1999 ≤ 0 hay x ≤ 1999.

Do đó, nghiệm của bất phương trình là x ≤ 1999.

Vậy nghiệm nguyên lớn nhất của bất phương trình là 1999.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Ta có: \(\frac{{x + 6}}{{1999}} + \frac{{x + 8}}{{1997}} \ge \frac{{x + 10}}{{1995}} + \frac{{x + 12}}{{1993}}\)

Suy ra \(\frac{{x + 6}}{{1999}} + 1 + \frac{{x + 8}}{{1997}} + 1 \ge \frac{{x + 10}}{{1995}} + 1 + \frac{{x + 12}}{{1993}} + 1\)

\(\frac{{x + 2005}}{{1999}} + \frac{{x + 2005}}{{1997}} \ge \frac{{x + 2005}}{{1995}} + \frac{{x + 2005}}{{1993}}\)

\(\frac{{x + 2005}}{{1999}} + \frac{{x + 2005}}{{1997}} - \frac{{x + 2005}}{{1995}} - \frac{{x + 2005}}{{1993}} \ge 0\)

(x + 2005) \(\left( {\frac{1}{{1999}} + \frac{1}{{1997}} - \frac{1}{{1995}} - \frac{1}{{1993}}} \right)\) ≥ 0

Nhận thấy \(\frac{1}{{1999}} + \frac{1}{{1997}} - \frac{1}{{1995}} - \frac{1}{{1993}}\) < 0 nên để thỏa mãn bất phương trình thì x + 2005 ≤ 0 hay x ≤ −2005.

Do đó, nghiệm nguyên của bất phương trình là x ≤ −2005.

Vậy nghiệm nguyên lớn nhất của bất phương trình là −2005.

Lời giải

Đáp án đúng là: B

Ta có: \(\frac{{1909 - x}}{{91}} + \frac{{1907 - x}}{{93}} + \frac{{1905 - x}}{{95}} + \frac{{1903 - x}}{{97}} > - 4\)

Nên \(\frac{{1909 - x}}{{91}} + \frac{{1907 - x}}{{93}} + \frac{{1905 - x}}{{95}} + \frac{{1903 - x}}{{97}} + 4 > 0\)

Ta có: \(\frac{{1909 - x}}{{91}} + 1 + \frac{{1907 - x}}{{93}} + 1 + \frac{{1905 - x}}{{95}} + 1 + \frac{{1903 - x}}{{97}} + 1 > 0\)

\(\frac{{2000 - x}}{{91}} + \frac{{2000 - x}}{{93}} + \frac{{2000 - x}}{{95}} + \frac{{2000 - x}}{{97}} > 0\)

(2000 – x) \(\left( {\frac{1}{{91}} + \frac{1}{{93}} + \frac{1}{{95}} + \frac{1}{{97}}} \right) > 0\)

Nhận thấy \(\frac{1}{{91}} + \frac{1}{{93}} + \frac{1}{{95}} + \frac{1}{{97}}\) > 0 nên để thỏa mãn bất phương trình thì

2000 – x > 0 hay x < 2000.

Do đó, nghiệm của bất phương trình là x < 2000.

Vậy nghiệm nguyên lớn nhất của bất phương trình là 1999.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay