Câu hỏi:
19/03/2025 166Một vật chuyển động theo quy luật \(s = - \frac{1}{3}{t^3} + 6{t^2}\) với t (giây) là khoảng thời gian tính từ khi vật bắt đầu chuyển động và s (mét) là quãng đường vật di chuyển được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 9 giây kể từ khi bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có: v = s' = −t2 + 12t; v' = −2t + 12; v' = 0 t = 6.
Bảng biến thiên
Nhìn bảng biến thiên ta thấy vận tốc đạt giá trị lớn nhất khi t = 6.
Giá trị lớn nhất là v(6) = 36 m/s.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Gọi độ dài cạnh đáy và chiều cao hộp quà lần lượt là x (cm) và y (cm) (x > 0, y > 0).
Theo giả thiết, ta có: 2x2 + 4xy = 200 \( \Rightarrow y = \frac{{50}}{x} - \frac{x}{2}\) và x < 10 (vì y > 0).</>
Xét hàm số \(V(x) = {x^2}\left( {\frac{{50}}{x} - \frac{x}{2}} \right) = 50x - \frac{1}{2}{x^3}\left( {0 < x < 10} \right)\)là thể tích của hộp quà mà bạn Hoa gấp được.
Ta có: \(V'\left( x \right) = 50 - \frac{3}{2}{x^2} = 0 \Leftrightarrow x = \pm \sqrt {\frac{{100}}{3}} \).
Bảng biến thiên của hàm số V(x) là:
Vậy bạn Hoa có thể gấp hộp quà có thể tích lớn nhất là \(V\left( {\sqrt {\frac{{100}}{3}} } \right) \approx 192(c{m^3}).\)
Lời giải
Đáp án đúng là: B
Số tiền hãng thu được khi đại lí nhập x chiếc điện thoại là f(x) = x(6000 – 3x).
Ta có: f'(x) = −6x + 6000. Khi đó, f'(x) = 0 x = 1000.
Bảng biến thiên của hàm số f(x) là:
Vậy đại lí nhập cùng lúc 1000 chiếc điện thoại thì hãng có thể thu nhiều tiền nhất từ đại lí đó với 3 000 000 (nghìn đồng).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.