Câu hỏi:

12/04/2025 115 Lưu

Một nhóm thợ đóng giày dự định hoàn thành kế hoạch trong 26 ngày. Nhưng do cải tiến kĩ thuật nên mỗi ngày đã vượt mức 6 đôi giày, do đó chẳng những nhóm thợ đã hoàn thành kế hoạch đã định trong 24 ngày mà còn vượt mức 104 đôi giày. Tính số đôi giày nhóm thợ phải làm theo kế hoạch.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Gọi \(x\) là số đôi giày mà nhóm thợ đóng được mỗi ngày theo kế hoạch \(\left( {{\rm{x}} \in {\mathbb{N}^*}} \right)\).

Số đôi giày đóng được theo kế hoạch là \(26x\) (đôi giày).

Số đôi giày mỗi ngày đóng được thực tế là \(x + 6\) (đôi giày).

Tổng số đôi giãy đóng được thực tế \(26x + 104\) (đôi giày).

Vìnhóm thợ hoàn thành công việc trong 24 ngày nên ta có phương trình:\(\frac{{26x + 104}}{{x + 6}} = 24\)

Giải phương trình, ta được \({\rm{x}} = 20\) (thoả mãn).

Vậy số đôi giày phải đóng theo kế hoạch là \(26.20 = 520\) (đôi giày).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Gọi \(x\left( {{\rm{\;m}}} \right)\) là chiều dài của khu đất với \(x > 16\). Khi đó, chiều rộng của khu đất là \(x - 16\left( {{\rm{\;m}}} \right)\) và mảnh vườn trồng hoa có \(AC = x - 16\left( {{\rm{\;m}}} \right)\) và \(BD = x\left( {{\rm{\;m}}} \right)\).

Do đó, diện tích của khu đất là: \(\left( {x - 16} \right)x\left( {{\rm{\;}}{{\rm{m}}^2}} \right)\) và diện tích của mảnh vườn trồng hoa là: \(\frac{1}{2}\left( {x - 16} \right)x\left( {{\rm{\;}}{{\rm{m}}^2}} \right)\). Vì diện tích của phần đất còn lại là \(96{\rm{\;}}{{\rm{m}}^2}\) nên ta có phương trình: \(\left( {x - 16} \right)x - \frac{1}{2}\left( {x - 16} \right)x = 96\) hay \(\frac{1}{2}\left( {x - 16} \right)x = 96\). Tức là, \({x^2} - 16x - 192 = 0\).

Giải phương trình:

\({x^2} - 16x - 192 = 0\)

\(\left( {{x^2} - 16x + 64} \right) - 256 = 0\)

\({(x - 8)^2} - {16^2} = 0\)

\(\left( {x - 24} \right)\left( {x + 8} \right) = 0\)

\[x = 24\] hoặc \(x\)\( = - 8\)

Do \(x > 16\) nên \(x = 24\). Vậy chiều dài của khu đất là \(24{\rm{\;m}}\).

Lời giải

Lời giải

Gọi \(x\) (sản phẩm/giờ) là năng suất dự định của người công nhân đó với \(x \in {\mathbb{N}^{\rm{*}}}\). Khi đó, năng suất thực tế của người đó là \(x + 3\) (sản phẩgiờ).

Theo giả thiết, ta có phương trình: \(\frac{{14}}{x} = \frac{{21}}{{x + 3}}\).

Giải phương trình:

\[\begin{array}{*{20}{r}}{\frac{{14}}{x}}&{\; = \frac{{21}}{{x + 3}}}\\{\frac{{14\left( {x + 3} \right)}}{{x\left( {x + 3} \right)}}}&{\; = \frac{{21x}}{{x\left( {x + 3} \right)}}}\\{14\left( {x + 3} \right)}&{\; = 21x}\\{14x + 42}&{\; = 21x}\\{7x}&{\; = 42}\\x&{\left. { = 6{\rm{ }}\;{\rm{ (tho}}a{\rm{ }}\;{\rm{ m }}\widetilde {\rm{a}}{\rm{ n }}\;{\rm{ }}x \in {\mathbb{N}^{\rm{*}}}} \right).}\end{array}\]

Vậy năng suất dự định của người công nhân đó là 6 sản phẩm/giờ.