Câu hỏi:
12/04/2025 106Một ô tô đi quãng đường \(AB\) dài \(61,5{\rm{\;km}}\). Sau khi đi được \(30{\rm{\;km}}\) với tốc độ không đổi, ô tô đi tiếp quãng đường còn lại với tốc độ tăng thêm \(2{\rm{\;km}}/{\rm{h}}\). Tính tốc độ ban đầu của ô tô, biết thời gian ô tô đi trên \(30{\rm{\;km}}\) đầu bằng thời gian ô tô đi trên \(31,5{\rm{\;km}}\) còn lại.
Quảng cáo
Trả lời:
Lời giải
Gọi \(x\left( {{\rm{\;km}}/{\rm{h}}} \right)\) là tốc độ ban đầu của ô tô với \(x > 0\). Ta lập được phương trình: \(\frac{{30}}{x} = \frac{{31,5}}{{x + 2}}\). Giải phương trình, ta tìm được \(x = 40\) (thoả mãn \(x > 0\)). Vậy tốc độ ban đầu của ô tô là \(40{\rm{\;km}}/{\rm{h}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Gọi \(x\left( {{\rm{\;m}}} \right)\) là chiều dài của khu đất với \(x > 16\). Khi đó, chiều rộng của khu đất là \(x - 16\left( {{\rm{\;m}}} \right)\) và mảnh vườn trồng hoa có \(AC = x - 16\left( {{\rm{\;m}}} \right)\) và \(BD = x\left( {{\rm{\;m}}} \right)\).
Do đó, diện tích của khu đất là: \(\left( {x - 16} \right)x\left( {{\rm{\;}}{{\rm{m}}^2}} \right)\) và diện tích của mảnh vườn trồng hoa là: \(\frac{1}{2}\left( {x - 16} \right)x\left( {{\rm{\;}}{{\rm{m}}^2}} \right)\). Vì diện tích của phần đất còn lại là \(96{\rm{\;}}{{\rm{m}}^2}\) nên ta có phương trình: \(\left( {x - 16} \right)x - \frac{1}{2}\left( {x - 16} \right)x = 96\) hay \(\frac{1}{2}\left( {x - 16} \right)x = 96\). Tức là, \({x^2} - 16x - 192 = 0\).
Giải phương trình:
\({x^2} - 16x - 192 = 0\)
\(\left( {{x^2} - 16x + 64} \right) - 256 = 0\)
\({(x - 8)^2} - {16^2} = 0\)
\(\left( {x - 24} \right)\left( {x + 8} \right) = 0\)
\[x = 24\] hoặc \(x\)\( = - 8\)
Do \(x > 16\) nên \(x = 24\). Vậy chiều dài của khu đất là \(24{\rm{\;m}}\).
Lời giải
Lời giải
Gọi \(x(\;{\rm{km}}/{\rm{h}})\) là tốc độ của xe đạp \(({\rm{x}} > 0)\).
Tốc độ của xe máy là \(4{\rm{x}}({\rm{km}}/{\rm{h}})\).
Thời gian xe đạp đi từ A đến B là \(\frac{{60}}{{\rm{x}}}\) (giờ).
Thời gian xe máy đi từ A đến B là \(\frac{{60}}{{4{\rm{x}}}}\) (giờ).
Ta có phương trình: \(\frac{{60}}{x} - \frac{{60}}{{4x}} = 3\)
\(60 \cdot 4 - 60 = 3 \cdot 4x\)
\(12x = 180\)
\(x = 15\)(thoả mãn).
Vậy tốc độ của xe đạp là \(15\;{\rm{km}}/{\rm{h}}\), tốc độ của xe máy là \(60\;{\rm{km}}/{\rm{h}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
123 bài tập Nón trụ cầu và hình khối có lời giải
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
50 bài tập Một số yếu tố xác suất có lời giải
Đề thi tham khảo môn Toán vào 10 tỉnh Quảng Bình năm học 2025-2026
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_TP Hà Nội
Đề thi tham khảo TS vào 10 năm học 2025 - 2026_Môn Toán_TP Phú Thọ
54 bài tập Hàm số bậc hai và giải bài toán bằng cách lập phương trình có lời giải
Đề thi thử TS vào 10 (Lần 2 - Tháng 2) năm học 2025 - 2026_Môn Toán_THCS Hoằng Thanh_Tỉnh Thanh Hóa