Câu hỏi:

12/04/2025 114

Một ca nô đi xuôi đòng từ địa điểm \(A\) đến địa điểm \(B\), rồi lại đi ngược dòng từ địa điểm \(B\) trở về địa điểm \(A\). Thời gian ca nô đi xuôi dòng và thời gian ca nô đi ngược dòng chênh lệch nhau 40 phút. Tính tốc độ của ca nô khi nước yên lặng. Biết rằng độ dài quãng đường \(AB\) là \(24{\rm{\;km}}\), tốc độ của dòng nước là \(3{\rm{\;km}}/{\rm{h}}\) và tốc độ của ca nô khi nước yên lặng không đổi trên suốt quãng đường.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Gọi \(x\left( {{\rm{\;km}}/{\rm{h}}} \right)\) là tốc độ của ca nô khi nước yên lặng với \(x > 3\). Ta lập được phương trình: \(\frac{{24}}{{x - 3}} - \frac{{24}}{{x + 3}} = \frac{2}{3}\). Giải phương trình, ta tìm được \(x = 15\) (thoả mãn \(x > 3\)) hoặc \(x = - 15\) (không thoả mãn \(x > 3\)). Vậy tốc độ của ca nô khi nước yên lặng là \(15{\rm{\;km}}/{\rm{h}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Gọi \(x\left( {{\rm{\;m}}} \right)\) là chiều dài của khu đất với \(x > 16\). Khi đó, chiều rộng của khu đất là \(x - 16\left( {{\rm{\;m}}} \right)\) và mảnh vườn trồng hoa có \(AC = x - 16\left( {{\rm{\;m}}} \right)\) và \(BD = x\left( {{\rm{\;m}}} \right)\).

Do đó, diện tích của khu đất là: \(\left( {x - 16} \right)x\left( {{\rm{\;}}{{\rm{m}}^2}} \right)\) và diện tích của mảnh vườn trồng hoa là: \(\frac{1}{2}\left( {x - 16} \right)x\left( {{\rm{\;}}{{\rm{m}}^2}} \right)\). Vì diện tích của phần đất còn lại là \(96{\rm{\;}}{{\rm{m}}^2}\) nên ta có phương trình: \(\left( {x - 16} \right)x - \frac{1}{2}\left( {x - 16} \right)x = 96\) hay \(\frac{1}{2}\left( {x - 16} \right)x = 96\). Tức là, \({x^2} - 16x - 192 = 0\).

Giải phương trình:

\({x^2} - 16x - 192 = 0\)

\(\left( {{x^2} - 16x + 64} \right) - 256 = 0\)

\({(x - 8)^2} - {16^2} = 0\)

\(\left( {x - 24} \right)\left( {x + 8} \right) = 0\)

\[x = 24\] hoặc \(x\)\( = - 8\)

Do \(x > 16\) nên \(x = 24\). Vậy chiều dài của khu đất là \(24{\rm{\;m}}\).

Lời giải

Lời giải

Gọi \(x\) (sản phẩm/giờ) là năng suất dự định của người công nhân đó với \(x \in {\mathbb{N}^{\rm{*}}}\). Khi đó, năng suất thực tế của người đó là \(x + 3\) (sản phẩgiờ).

Theo giả thiết, ta có phương trình: \(\frac{{14}}{x} = \frac{{21}}{{x + 3}}\).

Giải phương trình:

\[\begin{array}{*{20}{r}}{\frac{{14}}{x}}&{\; = \frac{{21}}{{x + 3}}}\\{\frac{{14\left( {x + 3} \right)}}{{x\left( {x + 3} \right)}}}&{\; = \frac{{21x}}{{x\left( {x + 3} \right)}}}\\{14\left( {x + 3} \right)}&{\; = 21x}\\{14x + 42}&{\; = 21x}\\{7x}&{\; = 42}\\x&{\left. { = 6{\rm{ }}\;{\rm{ (tho}}a{\rm{ }}\;{\rm{ m }}\widetilde {\rm{a}}{\rm{ n }}\;{\rm{ }}x \in {\mathbb{N}^{\rm{*}}}} \right).}\end{array}\]

Vậy năng suất dự định của người công nhân đó là 6 sản phẩm/giờ.