Câu hỏi:
13/04/2025 973
Từ lan can một tòa nhà cách mặt đất \(18m\) bạn An ném một chiếc máy bay đồ chơi theo phương ngang xuống đất. Biết máy bay rơi xuống theo quỹ đạo là một đường parabol và sau 6 giây kể từ vị trí cao nhất đó, máy bay rơi chạm mặt đất. Tìm hàm số biểu thị quỹ đạo nhảy của máy bay đồ chơi. Suy ra độ cao của máy bay sau 3 giây.

Quảng cáo
Trả lời:
Sau 6 giây kể từ vị trí cao nhất đó, máy bay rơi xuống đất nên khi \(y = - 18\) thì \(x = 6\).
Khi đó \( - 18 = a{.6^2} \Rightarrow a = \frac{{ - 18}}{{36}} = \frac{{ - 1}}{2}\).
Vậy hàm số biểu thị quỹ đạo của máy bay đồ chơi là: \((P):y = - \frac{1}{2}{x^2}\).
Thay \(x = 3\) vào \((P):y = - \frac{1}{2}{x^2} \Rightarrow y = - \frac{1}{2} \cdot {3^2} = - 4,5\)
\( \Rightarrow {\rm{MB}} = 4,5\;{\rm{m}} \Rightarrow {\rm{MH}} = {\rm{BH}} - {\rm{MB}} = 18 - 4,5 = 13,5\;{\rm{m}}\)
Vậy sau 3 giây thì máy bay cách mặt đất \(13,5\;{\rm{m}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\({\rm{B}}( - 3; - 9) \in (P):y = a{x^2} \Rightarrow - 9 = a \cdot {( - 3)^2} \Rightarrow a = - 1\)
\((P):y = - {x^2}\)
Khi banh đạt độ cao 5 m thì \({\rm{ME}} = {\rm{HE}} - {\rm{HM}} = 9 - 5 = 4\;{\rm{m}}\)
\( \Rightarrow {\rm{M}}\left( {{x_M}; - 4} \right) \in (P):y = - {x^2} \Rightarrow - 4 = - x_{\rm{M}}^2 \Rightarrow x_{\rm{M}}^2 = 4 \Rightarrow {x_{\rm{M}}} = - \sqrt 4 = - 2\)
Vậy sau 1 giây kể từ khi bóng được đá lên thì đạt độ cao 5 m.
Lời giải
Xét vuông tại \(A\), ta có: \({\rm{OA}} = \sqrt {{\rm{O}}{{\rm{M}}^2} - {\rm{A}}{{\rm{M}}^2}} = \sqrt {{{(2\sqrt 5 )}^2} - {2^2}} = 4\;{\rm{m}}\).
\( \Rightarrow {\rm{M}}(2; - 4) \in (P):y = a{x^2} \Rightarrow - 4 = a{.2^2} \Rightarrow a = - 1\).

\( \Rightarrow {\rm{AB}} = 2,5\;{\rm{m}} \Rightarrow {\rm{OB}} = {\rm{OA}} - {\rm{AB}} = 4 - 2,5 = 1,5\;{\rm{m}}\)
\(({\rm{HT}}):y = - \frac{3}{2}\)
Đường thẳng này cắt Parabol tại 2 điểm có tọa độ thỏa mãn hệ: \(\left\{ {\begin{array}{*{20}{l}}{y = - {x^2}}\\{y = - \frac{3}{2}}\end{array}} \right.\)
\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{x^2} = \frac{3}{2}}\\{y = - \frac{3}{2}}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{x = \frac{{3\sqrt 2 }}{2}}\\{y = - \frac{3}{2}}\end{array}} \right.} \right.\) hay \(\left\{ {\begin{array}{*{20}{l}}{x = - \frac{{3\sqrt 2 }}{2}}\\{y = - \frac{3}{2}}\end{array} \Rightarrow H\left( {\frac{{3\sqrt 2 }}{2}; - \frac{3}{2}} \right),T\left( { - \frac{{3\sqrt 2 }}{2}; - \frac{3}{2}} \right)} \right.\)
\( \Rightarrow {\rm{HT}} = 3\sqrt 2 \approx 4,24\;{\rm{m}} > 2,4\;{\rm{m}}.\)Vậy xe tải có thể đi qua cổng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.