Câu hỏi:

13/04/2025 540

Ở một điểm cao trên tháp cách mặt đất \(1,75\;{\rm{m}}\) nhà thiết kế có đặt một vòi phun nước. Biết rằng đường đi của các giọt nước sau khi ra khỏi vòi có dạng đường cong parabol và lên cao nhất được \(4m\). Hỏi nước rơi xuống đất cách chân tháp bao nhiêu mét?
Hỏi nước rơi xuống đất cách chân tháp bao nhiêu mét? (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Đường đi của các giọt nước sau khi ra khỏi vòi là parabol có dạng: \((P):y = a{x^2}\quad (a < 0)\).
Hỏi nước rơi xuống đất cách chân tháp bao nhiêu mét? (ảnh 2)
\({\rm{MH}} = {\rm{HE}} - {\rm{ME}} = 4 - 1,75 = 2,25\)
\( \Rightarrow {\rm{M}}( - 1,5; - 2,25) \in (P):y = a{x^2}\)\( \Rightarrow - 2,25 = a \cdot {( - 1,5)^2} \Rightarrow a = \frac{{ - 2,25}}{{{{( - 1,5)}^2}}} = - 1\)\((P):y = - {x^2}\)
\( \Rightarrow {\rm{A}}\left( {{x_A}; - 4} \right) \in (P):y = - {x^2} \Rightarrow - 4 = - x_{\rm{M}}^2 \Rightarrow x_{\rm{M}}^2 = 4 \Rightarrow {x_{\rm{M}}} = \sqrt 4 = 2\;{\rm{m}}\)
\({\rm{EA}} = {\rm{ES}} + {\rm{SA}} = 2 + 1,5 = 3,5\)
Vậy nước rơi xuống đất cách chân tháp một khoảng là \(3,5\;{\rm{m}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Khi Đường đi của quả banh là parabol có dạng: \((P):y = a{x^2}(a < 0)\).
\({\rm{B}}( - 3; - 9) \in (P):y = a{x^2} \Rightarrow - 9 = a \cdot {( - 3)^2} \Rightarrow a = - 1\)
\((P):y = - {x^2}\)
Khi banh đạt độ cao 5 m thì \({\rm{ME}} = {\rm{HE}} - {\rm{HM}} = 9 - 5 = 4\;{\rm{m}}\)
\( \Rightarrow {\rm{M}}\left( {{x_M}; - 4} \right) \in (P):y = - {x^2} \Rightarrow - 4 = - x_{\rm{M}}^2 \Rightarrow x_{\rm{M}}^2 = 4 \Rightarrow {x_{\rm{M}}} = - \sqrt 4 = - 2\)
Vậy sau 1 giây kể từ khi bóng được đá lên thì đạt độ cao 5 m.

Lời giải

Quỹ đạo máy bay là parabol có dạng: \((P):y = a{x^2}(a < 0)\).
Sau 6 giây kể từ vị trí cao nhất đó, máy bay rơi xuống đất nên khi \(y = - 18\) thì \(x = 6\).
Khi đó \( - 18 = a{.6^2} \Rightarrow a = \frac{{ - 18}}{{36}} = \frac{{ - 1}}{2}\).
Vậy hàm số biểu thị quỹ đạo của máy bay đồ chơi là: \((P):y = - \frac{1}{2}{x^2}\).
Thay \(x = 3\) vào \((P):y = - \frac{1}{2}{x^2} \Rightarrow y = - \frac{1}{2} \cdot {3^2} = - 4,5\)
\( \Rightarrow {\rm{MB}} = 4,5\;{\rm{m}} \Rightarrow {\rm{MH}} = {\rm{BH}} - {\rm{MB}} = 18 - 4,5 = 13,5\;{\rm{m}}\)
Vậy sau 3 giây thì máy bay cách mặt đất \(13,5\;{\rm{m}}\).