Câu hỏi:

13/04/2025 2,606

Trong một trận đấu bóng đá, người ta quan sát được quỹ đạo của quả bóng do thủ môn đá lên từ vạch\(5m50\) là một phần của đường cong parabol. Biết rằng, sau 3 giây thì quả bóng lên đến vị trí cao nhất là 9 mét (tham khảo hình vẽ). Hỏi sau mấy giây đầu tiên kể từ khi bóng được đá lên thì đạt độ cao \(5m\).
Hỏi sau mấy giây đầu tiên kể từ khi bóng được đá lên thì đạt độ cao \(5m\). (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Khi Đường đi của quả banh là parabol có dạng: \((P):y = a{x^2}(a < 0)\).
\({\rm{B}}( - 3; - 9) \in (P):y = a{x^2} \Rightarrow - 9 = a \cdot {( - 3)^2} \Rightarrow a = - 1\)
\((P):y = - {x^2}\)
Khi banh đạt độ cao 5 m thì \({\rm{ME}} = {\rm{HE}} - {\rm{HM}} = 9 - 5 = 4\;{\rm{m}}\)
\( \Rightarrow {\rm{M}}\left( {{x_M}; - 4} \right) \in (P):y = - {x^2} \Rightarrow - 4 = - x_{\rm{M}}^2 \Rightarrow x_{\rm{M}}^2 = 4 \Rightarrow {x_{\rm{M}}} = - \sqrt 4 = - 2\)
Vậy sau 1 giây kể từ khi bóng được đá lên thì đạt độ cao 5 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Quỹ đạo máy bay là parabol có dạng: \((P):y = a{x^2}(a < 0)\).
Sau 6 giây kể từ vị trí cao nhất đó, máy bay rơi xuống đất nên khi \(y = - 18\) thì \(x = 6\).
Khi đó \( - 18 = a{.6^2} \Rightarrow a = \frac{{ - 18}}{{36}} = \frac{{ - 1}}{2}\).
Vậy hàm số biểu thị quỹ đạo của máy bay đồ chơi là: \((P):y = - \frac{1}{2}{x^2}\).
Thay \(x = 3\) vào \((P):y = - \frac{1}{2}{x^2} \Rightarrow y = - \frac{1}{2} \cdot {3^2} = - 4,5\)
\( \Rightarrow {\rm{MB}} = 4,5\;{\rm{m}} \Rightarrow {\rm{MH}} = {\rm{BH}} - {\rm{MB}} = 18 - 4,5 = 13,5\;{\rm{m}}\)
Vậy sau 3 giây thì máy bay cách mặt đất \(13,5\;{\rm{m}}\).

Lời giải

a) Giả sử trên mặt phẳng tọa độ, độ dài các đoạn thẳng được tính theo đơn vị mét. Do khoảng cách giữa hai chân cổng là 4 m nên \({\rm{MA}} = {\rm{NA}} = 2\;{\rm{m}}\). Theo giả thiết ta có \({\rm{OM}} = {\rm{ON}} = 2\sqrt 5 \).
Xét vuông tại \(A\), ta có: \({\rm{OA}} = \sqrt {{\rm{O}}{{\rm{M}}^2} - {\rm{A}}{{\rm{M}}^2}} = \sqrt {{{(2\sqrt 5 )}^2} - {2^2}} = 4\;{\rm{m}}\).
\( \Rightarrow {\rm{M}}(2; - 4) \in (P):y = a{x^2} \Rightarrow - 4 = a{.2^2} \Rightarrow a = - 1\).
Hỏi xe tải có đi qua cổng được không? Tại sao? (ảnh 1)
b) Để đáp ứng chiều cao trước hết xe tải phải đi vào chính giữa cổng.
\( \Rightarrow {\rm{AB}} = 2,5\;{\rm{m}} \Rightarrow {\rm{OB}} = {\rm{OA}} - {\rm{AB}} = 4 - 2,5 = 1,5\;{\rm{m}}\)
\(({\rm{HT}}):y = - \frac{3}{2}\)
Đường thẳng này cắt Parabol tại 2 điểm có tọa độ thỏa mãn hệ: \(\left\{ {\begin{array}{*{20}{l}}{y = - {x^2}}\\{y = - \frac{3}{2}}\end{array}} \right.\)
\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{x^2} = \frac{3}{2}}\\{y = - \frac{3}{2}}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{x = \frac{{3\sqrt 2 }}{2}}\\{y = - \frac{3}{2}}\end{array}} \right.} \right.\) hay \(\left\{ {\begin{array}{*{20}{l}}{x = - \frac{{3\sqrt 2 }}{2}}\\{y = - \frac{3}{2}}\end{array} \Rightarrow H\left( {\frac{{3\sqrt 2 }}{2}; - \frac{3}{2}} \right),T\left( { - \frac{{3\sqrt 2 }}{2}; - \frac{3}{2}} \right)} \right.\)
\( \Rightarrow {\rm{HT}} = 3\sqrt 2 \approx 4,24\;{\rm{m}} > 2,4\;{\rm{m}}.\)Vậy xe tải có thể đi qua cổng.