Câu hỏi:

05/06/2025 31

Trong \[\Delta ABC\], nếu \[\frac{{\sin B}}{{\sin C}} = 2\cos A\] thì \[\Delta ABC\] là tam giác có tính chất nào sau đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ta có \[\frac{{\sin B}}{{\sin C}} = 2\cos A \Rightarrow \sin B = 2\sin C.\cos A. = \sin \left( {C + A} \right) + \sin \left( {C - A} \right)\]

Mặt khác \(A + B + C = \pi  \Rightarrow B = \pi  - \left( {A + C} \right) \Rightarrow \sin B = \sin \left( {A + C} \right)\).

Do đó, ta được \(\sin \left( {C - A} \right) = 0 \Rightarrow A = C\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: B

Ta có \(M = {\cos ^4}15^\circ  - {\sin ^4}15^\circ  = {\left( {{{\cos }^2}15^\circ } \right)^2} - {\left( {{{\sin }^2}15^\circ } \right)^2}\)

\( = \left( {{{\cos }^2}15^\circ  - {{\sin }^2}15^\circ } \right)\left( {{{\cos }^2}15^\circ  + {{\sin }^2}15^\circ } \right)\)

\( = {\cos ^2}15^\circ  - {\sin ^2}15^\circ  = \cos \left( {2.15^\circ } \right) = \cos 30^\circ  = \frac{{\sqrt 3 }}{2}.\)

Câu 2

Lời giải

Đáp án đúng là: A

Áp dụng công thức \[\cos a.\cos b - \sin a.\sin b = \cos \left( {a + b} \right)\], ta được

\[\sin 2x.\sin 3x = \cos 2x.\cos 3x \Leftrightarrow \cos 2x.\cos 3x - \sin 2x.\sin 3x = 0\]

\[ \Leftrightarrow \cos 5x = 0 \Leftrightarrow 5x = \frac{\pi }{2} + k\pi  \Leftrightarrow x = \frac{\pi }{{10}} + k\frac{\pi }{5}.\]

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP