Câu hỏi:

14/07/2025 5

Cho hàm số \(f\left( x \right) = \frac{1}{x}\). Khi đó     

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

D

Hàm số \(f\left( x \right) = \frac{1}{x}\) không xác định tại x = 0. Do đó f(x) liên tục trên (−∞; 0) và (0; +∞).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có: \(f\left( {{x_0}} \right) = f(1) = 1 + 1 = 2\).

b) \(\mathop {\lim }\limits_{x \to 1} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} (x + 1) = 2 = f\left( 1 \right){\rm{. }}\)

Vậy hàm số liên tục tại điểm \({x_0} = 1\).

c) Ta có: \(g\left( {{x_0}} \right) = g(1) = 4\).

\(\mathop {\lim }\limits_{x \to {x_0}} g(x) = \mathop {\lim }\limits_{x \to 1} \left( {4{x^2} - x + 1} \right) = 4 = g(1)\)

Vậy hàm số liên tục tại điểm \({x_0} = 1\).

d) Hàm số số \(y = f\left( x \right) - g\left( x \right)\) liên tục tại điểm \({x_0} = 1\).

Đáp án: a) Đúng;    b) Đúng; c) Đúng; d) Sai.

Lời giải

Hàm số f(x) liên tục với ∀x ≠ 2.

Do đó f(x) liên tục trên ℝ Û f(x) liên tục tại x = 2 Û \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\) (1).

Ta có \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - x - 2}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {x + 1} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \left( {x + 1} \right) = 2 + 1 = 3\); f(2) = m.

Khi đó (1) Û 3 = m Û m = 3.

Trả lời: 3.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP