Câu hỏi:

14/07/2025 24 Lưu

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{\sqrt {{x^2} - 4x + 4} }}{x}\;\;khi\; < 2\\m{x^2} - 3\;\;\;\;\;\;\;\;\;\;khi\;x \ge 2\end{array} \right.\) (m là tham số).

a) Khi m = 1 thì \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 1\).

b) Hàm số f(x) liên tục tại x = 2 khi m = 1.

c) f(2) = 4m – 3.

d) \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 1\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Với m = 1 thì \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {{x^2} - 3} \right) = 1\).

b) c) d) \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {m{x^2} - 3} \right) = 4m - 3\); \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{\sqrt {{x^2} - 4x + 4} }}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{2 - x}}{{x - 2}} =  - 1\);

f(2) = 4m – 3.

Để hàm số liên tục tại x = 2 thì \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right)\)\( \Leftrightarrow 4m - 3 =  - 1 \Leftrightarrow m = \frac{1}{2}\).

Đáp án: a) Đúng;    b) Sai; c) Đúng; d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {2x - 1}  - 1}}{{x - 1}}\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{{2\left( {x - 1} \right)}}{{\left( {\sqrt {2x - 1}  + 1} \right)\left( {x - 1} \right)}}\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{2}{{\sqrt {2x - 1}  + 1}} = 1\].

Để hàm số liên tục tại x = 1 thì \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\) Û m – 2024 = 1 Û m = 2025.

Trả lời: 2025.

Câu 2

Lời giải

B

Dựa vào đồ thị hàm số y = f(x), ta thấy hàm số f(x) liên tục tại x = 1.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP