Câu hỏi:

19/08/2025 40 Lưu

Biết hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3x + b\;\;khi\;x \le - 1\\x + a\;\;\;\;khi\;x > - 1\end{array} \right.\) liên tục tại x = −1. Tìm a – b.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(\mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ + }} \left( {x + a} \right) = a - 1\); \(\mathop {\lim }\limits_{x \to  - {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ - }} \left( {3x + b} \right) =  - 3 + b\); f(−1) = b – 3.

Vì hàm số liên tục tại x = −1 nên a – 1 = −3 + b Û a – b = −2.

Trả lời: −2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {2x - 1}  - 1}}{{x - 1}}\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{{2\left( {x - 1} \right)}}{{\left( {\sqrt {2x - 1}  + 1} \right)\left( {x - 1} \right)}}\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{2}{{\sqrt {2x - 1}  + 1}} = 1\].

Để hàm số liên tục tại x = 1 thì \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\) Û m – 2024 = 1 Û m = 2025.

Trả lời: 2025.

Câu 2

A. \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).                                                                  
B. \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\) không tồn tại.                                          
C. \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) \ne f\left( {{x_0}} \right)\).                                                     
D. f(x0) không tồn tại.

Lời giải

A

\(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).

Câu 3

A. Hàm số f(x) liên tục trên ℝ.     
B. Hàm số f(x) liên tục tại x = 1.     
C. Hàm số f(x) liên tục tại x = −1.     
D. Hàm số f(x) liên tục trên khoảng (−3; 1).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Hàm số liên tục tại x = 2.                              
B. Hàm số gián đoạn tại x = 2.                                      
C. f(4) = 2.                                                          
D. \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP