Cho hàm số bậc ba có đồ thị như hình vẽ. Mệnh đề nào sau đây đúng?
Cho hàm số bậc ba có đồ thị như hình vẽ. Mệnh đề nào sau đây đúng?

A. Hàm số nghịch biến trên \(\left( {1; + \infty } \right)\).
B. Hàm số đồng biến trên \(\left( {1; + \infty } \right)\).
Quảng cáo
Trả lời:

Chọn đáp án B.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. Hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).
B. Hàm số nghịch biến trên mỗi khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).
C. Hàm số đồng biến trên \(\mathbb{R}\backslash \left\{ 1 \right\}\).
D. Hàm số đồng biến với mọi \(x \ne 1\).
Lời giải
Chọn đáp án B
Câu 2
A. \(f\left( { - 2} \right) = f\left( 2 \right)\).
B. \(f\left( { - 3} \right) > f\left( 5 \right)\).
C. \(f\left( { - 3} \right) < f\left( 5 \right)\).
D. \(f\left( 0 \right) < f\left( 5 \right)\).
Lời giải
Chọn đáp án B
Câu 3
A. \(\left( { - \infty ;0} \right)\).
B. \(\left( {1;3} \right)\).
C. \(\left( {0;2} \right)\).
D. \(\left( {2; + \infty } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\frac{{f\left( {{x_2}} \right) - f\left( {{x_1}} \right)}}{{{x_2} - {x_1}}} > 0,\;\forall {x_1},{x_2} \in \mathbb{R},{x_1} \ne {x_2}\).
B. \(\frac{{f\left( {{x_1}} \right)}}{{f\left( {{x_2}} \right)}} < 1,\;\forall {x_1},{x_2} \in \mathbb{R},{x_1} \ne {x_2}\).
C. \(\frac{{f\left( {{x_2}} \right) - f\left( {{x_1}} \right)}}{{{x_2} - {x_1}}} < 0,\;\forall {x_1},{x_2} \in \mathbb{R},{x_1} \ne {x_2}\).
D. \(f\left( {{x_1}} \right) < f\left( {{x_2}} \right),\;\forall {x_1},{x_2} \in \mathbb{R},{x_1} \ne {x_2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(f\left( x \right)\) nghịch biến trên \(\mathbb{R}\).
B. \(f\left( x \right)\) đồng biến trên \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).
C. \(f\left( x \right)\) nghịch biến trên \(\left( { - \infty ; - 1} \right) \cup \left( {1; + \infty } \right)\).
D. \(f\left( x \right)\) đồng biến trên \(\mathbb{R}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Hàm số nghịch biến trên khoảng \(\left( { - \infty \,;\,2} \right)\).
B. Hàm số nghịch biến trên khoảng \(\left( {0\,;\,2} \right)\).
C. Hàm số nghịch biến trên khoảng \(\left( { - \infty \,;\, - 2} \right)\).
D. Hàm số đồng biến trên khoảng \(\left( {2\,;\, + \infty } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(f(x) + 2020\).
B. \(f(x) - 2019\).
C. \(f(x) - {x^2}\).
D. \(f(x) - x\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.