Câu hỏi:

03/08/2025 8 Lưu

Cho hình bình hành ABCDE, N lần lượt là trung điểm của BC, AE. Tìm các số pq sao cho \(\overrightarrow {DN} = p\overrightarrow {AB} + q\overrightarrow {AC} \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Ta có \(\overrightarrow {DN}  = \overrightarrow {DA}  + \overrightarrow {AN}  = \overrightarrow {CB}  + \frac{1}{2}\overrightarrow {AE}  = \overrightarrow {AB}  - \overrightarrow {AC}  + \frac{1}{4}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right) = \frac{5}{4}\overrightarrow {AB}  - \frac{3}{4}\overrightarrow {AC} \).

Vậy \(p = \frac{5}{4},q =  - \frac{3}{4}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

c (ảnh 1)

a) Sai. Theo tính chất trung điểm đoạn thẳng BC ta có \[\overrightarrow {AN}  = \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right)\].

b) Sai. Vì G là trọng tâm tam giác \[ABC\] nên \[\overrightarrow {CM}  = \frac{3}{2}\overrightarrow {CG} \].

c) Đúng. Do M, N lần lượt là trung điểm của cạnh AB và BC nên MN là đường trung bình của tam giác \[ABC\], do đó ta có \[\overrightarrow {MN}  = \frac{1}{2}\overrightarrow {AC}  = \frac{1}{2}\left( {\overrightarrow {BC}  - \overrightarrow {BA} } \right)\].

d) Đúng. Ta có \[\overrightarrow {AN}  = \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right) = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC} \];

\[\overrightarrow {CM}  = \overrightarrow {CA}  + \overrightarrow {AM}  \Rightarrow \frac{1}{2}\overrightarrow {CM}  = \frac{1}{2}\overrightarrow {CA}  + \frac{1}{2}\overrightarrow {AM} \].

Suy ra

\[\overrightarrow {AN}  + \frac{1}{2}\overrightarrow {CM}  = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC}  + \frac{1}{2}\overrightarrow {CA}  + \frac{1}{2}\overrightarrow {AM}  = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC}  - \frac{1}{2}\overrightarrow {AC}  + \frac{1}{2} \cdot \frac{1}{2}\overrightarrow {AB}  = \frac{3}{4}\overrightarrow {AB} \].

Do đó \[\overrightarrow {AB}  = \frac{4}{3}\overrightarrow {AN}  + \frac{2}{3}\overrightarrow {CM} \].

Lời giải

c (ảnh 1)

a) Đúng. Ta có \(\overrightarrow {AN}  = \frac{1}{6}\overrightarrow {AC}  = \frac{1}{6}\left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right)\).

b) Sai. Ta có \(\overrightarrow {MN}  = \overrightarrow {AN}  - \overrightarrow {AM}  = \frac{1}{6}\left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right) - \frac{1}{2}\overrightarrow {AB}  = \frac{{ - 1}}{3}\overrightarrow {AB}  + \frac{1}{6}\overrightarrow {AD} .\)

c) Sai. Ta có \(\overrightarrow {MP}  = \overrightarrow {AP}  - \overrightarrow {AM}  = \frac{1}{4}\overrightarrow {AD}  - \frac{1}{2}\overrightarrow {AB} \).

d) Đúng. Ta có \(\overrightarrow {MN}  = \frac{1}{6}\left( {\overrightarrow {AD}  - 2\overrightarrow {AB} } \right) = \frac{1}{6} \cdot 4 \cdot \frac{1}{4}\left( {\overrightarrow {AD}  - 2\overrightarrow {AB} } \right) = \frac{2}{3}\overrightarrow {MP} \).

Suy ra \(\overrightarrow {MN} ,\overrightarrow {MP} \) cùng phương. Vậy ba điểm \(M,N,P\) thẳng hàng.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP