Câu hỏi:

03/08/2025 5 Lưu

Cho hình vuông \(ABCD\) tâm \(O\) cạnh \(a\). \(G\) là trọng tâm tam giác \(ABC\).

v (ảnh 1)

a) \(\overrightarrow {AC}  =  - 2\overrightarrow {AO} \).

b) \(\overrightarrow {AB}  + \overrightarrow {AD}  = 2\overrightarrow {AO} \).

c) \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow 0 \).

d) \(\left| {\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD} } \right| = 2a\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Sai. \(AC = 2AO\) và vectơ \(\overrightarrow {AC} , \overrightarrow {AO} \) là hai vectơ cùng hướng nên \(\overrightarrow {AC}  = 2\overrightarrow {AO} \).

b) Đúng. Theo quy tắc hình bình hành ta có \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \).

Mặt khác \(\overrightarrow {AC}  = 2\overrightarrow {AO} \). Vậy \(\overrightarrow {AB}  + \overrightarrow {AD}  = 2\overrightarrow {AO} \).

c) Đúng. \(O\) là trung điểm của \(AC\) và \(BD\) nên \(\overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow 0 , \overrightarrow {OB}  + \overrightarrow {OD}  = \overrightarrow 0 \).

Vậy \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow 0 \).

d) Sai.

\(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow {GO}  + \overrightarrow {OA}  + \overrightarrow {GO}  + \overrightarrow {OB}  + \overrightarrow {GO}  + \overrightarrow {OC}  + \overrightarrow {GO}  + \overrightarrow {OD} \)

\( = 4\overrightarrow {GO}  + \left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD} } \right) = 4\overrightarrow {GO} \).

Nên suy ra \(\left| {\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD} } \right| = 4\left| {\overrightarrow {GO} } \right| = 4GO\).

Vì hình vuông \(ABCD\) có tâm \(O\) cạnh \(a\), \(G\) là trọng tâm tam giác \(ABC\) nên \(GO = \frac{1}{3}BO = \frac{1}{6}BD = \frac{{a\sqrt 2 }}{6}\).

Vậy \(\left| {\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD} } \right| = \frac{{2a\sqrt 2 }}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

c (ảnh 1)

a) Sai. Theo tính chất trung điểm đoạn thẳng BC ta có \[\overrightarrow {AN}  = \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right)\].

b) Sai. Vì G là trọng tâm tam giác \[ABC\] nên \[\overrightarrow {CM}  = \frac{3}{2}\overrightarrow {CG} \].

c) Đúng. Do M, N lần lượt là trung điểm của cạnh AB và BC nên MN là đường trung bình của tam giác \[ABC\], do đó ta có \[\overrightarrow {MN}  = \frac{1}{2}\overrightarrow {AC}  = \frac{1}{2}\left( {\overrightarrow {BC}  - \overrightarrow {BA} } \right)\].

d) Đúng. Ta có \[\overrightarrow {AN}  = \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right) = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC} \];

\[\overrightarrow {CM}  = \overrightarrow {CA}  + \overrightarrow {AM}  \Rightarrow \frac{1}{2}\overrightarrow {CM}  = \frac{1}{2}\overrightarrow {CA}  + \frac{1}{2}\overrightarrow {AM} \].

Suy ra

\[\overrightarrow {AN}  + \frac{1}{2}\overrightarrow {CM}  = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC}  + \frac{1}{2}\overrightarrow {CA}  + \frac{1}{2}\overrightarrow {AM}  = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC}  - \frac{1}{2}\overrightarrow {AC}  + \frac{1}{2} \cdot \frac{1}{2}\overrightarrow {AB}  = \frac{3}{4}\overrightarrow {AB} \].

Do đó \[\overrightarrow {AB}  = \frac{4}{3}\overrightarrow {AN}  + \frac{2}{3}\overrightarrow {CM} \].

Câu 2

Lời giải

Đáp án đúng là: D

Ta có \(\overrightarrow {DN}  = \overrightarrow {DA}  + \overrightarrow {AN}  = \overrightarrow {CB}  + \frac{1}{2}\overrightarrow {AE}  = \overrightarrow {AB}  - \overrightarrow {AC}  + \frac{1}{4}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right) = \frac{5}{4}\overrightarrow {AB}  - \frac{3}{4}\overrightarrow {AC} \).

Vậy \(p = \frac{5}{4},q =  - \frac{3}{4}\).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP