Câu hỏi:

03/08/2025 29 Lưu

Cho tứ giác \(ABCD\). Gọi \(I,J\) lần lượt là trung điểm của \(AC\) và \(BD\). Biết \(\overrightarrow {AB}  + \overrightarrow {CD}  = k\overrightarrow {IJ} ,\) khi đó \(k = ?\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

c (ảnh 1)

Ta có \(\left\{ \begin{array}{l}\overrightarrow {IJ}  = \overrightarrow {IA}  + \overrightarrow {AB}  + \overrightarrow {BJ} \left( 1 \right)\\\overrightarrow {IJ}  = \overrightarrow {IC}  + \overrightarrow {CD}  + \overrightarrow {DJ} \left( 2 \right)\end{array} \right.\).

Cộng theo vế (1) và (2), ta được:

\(2\overrightarrow {IJ}  = \left( {\overrightarrow {IA}  + \overrightarrow {IC} } \right) + \left( {\overrightarrow {AB}  + \overrightarrow {CD} } \right) + \left( {\overrightarrow {BJ}  + \overrightarrow {DJ} } \right) = \vec 0 + \overrightarrow {AB}  + \overrightarrow {CD}  + \vec 0 = \overrightarrow {AB}  + \overrightarrow {CD} \).

Suy ra \(k = 2\).

Đáp án: 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Do \(M\) là trung điểm của \(AB\) nên ta có \(\overrightarrow {MA}  + \overrightarrow {MB}  = \vec 0\).

b) Đúng. Do \(N\) là trung điểm của \(CD\) nên ta có \(\overrightarrow {NC}  + \overrightarrow {ND}  = \vec 0\).

c) Sai. Theo quy tắc cộng, ta có \(\overrightarrow {MN}  = \overrightarrow {MA}  + \overrightarrow {AN}  = \overrightarrow {MA}  + \overrightarrow {AC}  + \overrightarrow {CN} \). (1)

d) Đúng. Ta lại có \(\overrightarrow {MN}  = \overrightarrow {MB}  + \overrightarrow {BD}  + \overrightarrow {DN} \). (2)

Cộng hai đẳng thức (1), (2) vế theo vế, ta được

\(2\overrightarrow {MN}  = \left( {\overrightarrow {MA}  + \overrightarrow {MB} } \right) + \left( {\overrightarrow {AC}  + \overrightarrow {BD} } \right) + \left( {\overrightarrow {CN}  + \overrightarrow {DN} } \right)\).

Kết hợp với kết quả ở ý a) và b), ta suy ra được \(2\overrightarrow {MN}  = \overrightarrow {AC}  + \overrightarrow {BD} \).

Lời giải

c (ảnh 1)

a) Đúng. Ta có \(\overrightarrow {AN}  = \frac{1}{6}\overrightarrow {AC}  = \frac{1}{6}\left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right)\).

b) Sai. Ta có \(\overrightarrow {MN}  = \overrightarrow {AN}  - \overrightarrow {AM}  = \frac{1}{6}\left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right) - \frac{1}{2}\overrightarrow {AB}  = \frac{{ - 1}}{3}\overrightarrow {AB}  + \frac{1}{6}\overrightarrow {AD} .\)

c) Sai. Ta có \(\overrightarrow {MP}  = \overrightarrow {AP}  - \overrightarrow {AM}  = \frac{1}{4}\overrightarrow {AD}  - \frac{1}{2}\overrightarrow {AB} \).

d) Đúng. Ta có \(\overrightarrow {MN}  = \frac{1}{6}\left( {\overrightarrow {AD}  - 2\overrightarrow {AB} } \right) = \frac{1}{6} \cdot 4 \cdot \frac{1}{4}\left( {\overrightarrow {AD}  - 2\overrightarrow {AB} } \right) = \frac{2}{3}\overrightarrow {MP} \).

Suy ra \(\overrightarrow {MN} ,\overrightarrow {MP} \) cùng phương. Vậy ba điểm \(M,N,P\) thẳng hàng.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP