Câu hỏi:

03/08/2025 38 Lưu

Cho tứ giác \(ABCD\). Gọi \(I,J\) theo thứ tự là trung điểm của \(AB,CD\) và \(IJ = \frac{5}{4}\). Gọi \(M,N\) theo thứ tự là trung điểm của \(BC,AC\). Tính \(\left| {\overrightarrow {AM}  + \overrightarrow {BN}  + \overrightarrow {CI} } \right|\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

c (ảnh 1)

Ta có \(2\overrightarrow {AM}  = \overrightarrow {AB}  + \overrightarrow {AC} \) (1), \(2\overrightarrow {BN}  = \overrightarrow {BA}  + \overrightarrow {BC} \) (2), \(2\overrightarrow {CI}  = \overrightarrow {CA}  + \overrightarrow {CB} \) (3).

Cộng theo vế (1), (2), (3): \(2\left( {\overrightarrow {AM}  + \overrightarrow {BN}  + \overrightarrow {CI} } \right) = \left( {\overrightarrow {AB}  + \overrightarrow {BA} } \right) + \left( {\overrightarrow {AC}  + \overrightarrow {CA} } \right) + \left( {\overrightarrow {BC}  + \overrightarrow {CB} } \right) = \vec 0{\rm{. }}\)

Suy ra \(\overrightarrow {AM}  + \overrightarrow {BN}  + \overrightarrow {CI}  = \vec 0\).

Do vậy \(\left| {\overrightarrow {AM}  + \overrightarrow {BN}  + \overrightarrow {CI} } \right| = 0\).

Đáp án: 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Do \(M\) là trung điểm của \(AB\) nên ta có \(\overrightarrow {MA}  + \overrightarrow {MB}  = \vec 0\).

b) Đúng. Do \(N\) là trung điểm của \(CD\) nên ta có \(\overrightarrow {NC}  + \overrightarrow {ND}  = \vec 0\).

c) Sai. Theo quy tắc cộng, ta có \(\overrightarrow {MN}  = \overrightarrow {MA}  + \overrightarrow {AN}  = \overrightarrow {MA}  + \overrightarrow {AC}  + \overrightarrow {CN} \). (1)

d) Đúng. Ta lại có \(\overrightarrow {MN}  = \overrightarrow {MB}  + \overrightarrow {BD}  + \overrightarrow {DN} \). (2)

Cộng hai đẳng thức (1), (2) vế theo vế, ta được

\(2\overrightarrow {MN}  = \left( {\overrightarrow {MA}  + \overrightarrow {MB} } \right) + \left( {\overrightarrow {AC}  + \overrightarrow {BD} } \right) + \left( {\overrightarrow {CN}  + \overrightarrow {DN} } \right)\).

Kết hợp với kết quả ở ý a) và b), ta suy ra được \(2\overrightarrow {MN}  = \overrightarrow {AC}  + \overrightarrow {BD} \).

Câu 2

A. \(\overrightarrow {MN} = 7\overrightarrow a \).                                     
B. \(\overrightarrow {MN} = - 5\overrightarrow a \).   
C. \(\overrightarrow {MN} = - 7\overrightarrow a \).   
D. \(\overrightarrow {MN} = - 5\overrightarrow a \).

Lời giải

Đáp án đúng là: C

Ta có \(\overrightarrow {MN}  = \overrightarrow {ON}  - \overrightarrow {OM}  =  - 4\overrightarrow a  - 3\overrightarrow a  =  - 7\overrightarrow a \).

Câu 4

A. \(M\) là trung điểm của \(BC\).
B. \(M\)là trung điểm của \(IC\).
C. \(M\) là trung điểm của \(IA\).
D. \(M\) là điểm trên cạnh \(IC\) sao cho \(IM = 2MC\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP