Câu hỏi:

05/08/2025 32 Lưu

Cho \(\cot \alpha  =  - \sqrt 2 ,\left( {0^\circ  < \alpha  < 180^\circ } \right)\).

a) \(\sin \alpha  > 0\).

b) \(\sin \alpha  =  \pm \frac{1}{{\sqrt 3 }}\).

c) \(\cos \alpha  =  - \frac{{\sqrt 6 }}{3}\).

d) \(\tan \alpha  = \frac{1}{{\sqrt 2 }}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Do \(0^\circ  < \alpha  < 180^\circ \) nên \(\sin \alpha  > 0\).

b) Sai. Ta có \({\sin ^2}\alpha  = \frac{1}{{1 + {{\cot }^2}\alpha }} = \frac{1}{{1 + 2}} = \frac{1}{3} \Leftrightarrow \sin \alpha  =  \pm \frac{1}{{\sqrt 3 }}\).

Mà \(\sin \alpha  > 0\) nên \(\sin \alpha  = \frac{1}{{\sqrt 3 }}\).

c) Đúng. Ta có \(\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }} \Rightarrow \cos \alpha  = \cot \alpha  \cdot \sin \alpha  =  - \sqrt 2  \cdot \frac{1}{{\sqrt 3 }} =  - \frac{{\sqrt 6 }}{3}\).

d) Sai. Ta có \(\tan \alpha  = \frac{1}{{\cot \alpha }} =  - \frac{1}{{\sqrt 2 }}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[P = \sin \left( {90^\circ  - \alpha } \right) - \cos \left( {180^\circ  - \alpha } \right) = \cos \alpha  - \left( { - \cos \alpha } \right) = 2\cos \alpha \].

Mặt khác \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1 \Rightarrow {\cos ^2}\alpha  = 1 - {\sin ^2}\alpha  = 1 - {\left( {\frac{1}{3}} \right)^2} = \frac{8}{9} \Leftrightarrow \left[ \begin{array}{l}\cos \alpha  = \frac{{2\sqrt 2 }}{3}\\\cos \alpha  =  - \frac{{2\sqrt 2 }}{3}\end{array} \right.\).

Lại có \(0^\circ  < \alpha  < 90^\circ \) nên \(\cos \alpha  > 0\), từ đó ta được \(\cos \alpha  = \frac{{2\sqrt 2 }}{3}\).

Vậy \[P = 2\cos \alpha  = \frac{{4\sqrt 2 }}{3} \approx 1,89\].

Đáp án: \(1,89\).

Câu 2

Lời giải

Đáp án đúng là: D

\(A = \left( {\tan 1^\circ  \cdot \tan 89^\circ } \right) \cdot \left( {\tan 2^\circ  \cdot \tan 88^\circ } \right) \cdot ... \cdot \left( {\tan 44^\circ  \cdot \tan 46^\circ } \right) \cdot \tan 45^\circ \)

\[ = \left( {\tan 1^\circ  \cdot \cot 1^\circ } \right) \cdot \left( {\tan 2^\circ  \cdot \cot 2^\circ } \right) \cdot ... \cdot \left( {\tan 44^\circ  \cdot \cot 44^\circ } \right) \cdot \tan 45^\circ \]

\( = 1\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP