Cho tam giác \(ABC\) có \(b = 7\;\,{\rm{cm}},c = 5\;\,{\rm{cm}},\widehat A = 120^\circ \).
a) \(a = \sqrt {127} \;\,{\rm{cm}}\).
b) \(\cos B \approx 0,21\).
c) \(\cos C \approx 0,91\).
d) \(R \approx 6,03\,{\rm{cm}}\).
Cho tam giác \(ABC\) có \(b = 7\;\,{\rm{cm}},c = 5\;\,{\rm{cm}},\widehat A = 120^\circ \).
a) \(a = \sqrt {127} \;\,{\rm{cm}}\).
b) \(\cos B \approx 0,21\).
c) \(\cos C \approx 0,91\).
d) \(R \approx 6,03\,{\rm{cm}}\).
Quảng cáo
Trả lời:
a) Sai. Áp dụng định lí côsin trong tam giác, ta có:
\({a^2} = {b^2} + {c^2} - 2bc\cos A \Rightarrow {a^2} = {7^2} + {5^2} - 2 \cdot 7 \cdot 5 \cdot \cos 120^\circ = 109.\)
Do đó, \(a = \sqrt {109} \;{\rm{cm}}\).
b) Sai. Ta có \({b^2} = {a^2} + {c^2} - 2ac\cos B \Rightarrow \cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = \frac{{109 + {5^2} - {7^2}}}{{2\sqrt {109} \cdot 5}} \approx 0,81\).
c) Đúng. Tương tự, \(\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} = \frac{{109 + {7^2} - {5^2}}}{{2\sqrt {109} \cdot 7}} \approx 0,91\).
d) Đúng. Áp dụng định lí sin trong tam giác, ta có:
\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\) nên \(R = \frac{a}{{2 \cdot \sin A}} = \frac{{\sqrt {109} }}{{2 \cdot \sin 120^\circ }} \approx 6,03\,\,({\rm{cm}})\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[P = \sin \left( {90^\circ - \alpha } \right) - \cos \left( {180^\circ - \alpha } \right) = \cos \alpha - \left( { - \cos \alpha } \right) = 2\cos \alpha \].
Mặt khác \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Rightarrow {\cos ^2}\alpha = 1 - {\sin ^2}\alpha = 1 - {\left( {\frac{1}{3}} \right)^2} = \frac{8}{9} \Leftrightarrow \left[ \begin{array}{l}\cos \alpha = \frac{{2\sqrt 2 }}{3}\\\cos \alpha = - \frac{{2\sqrt 2 }}{3}\end{array} \right.\).
Lại có \(0^\circ < \alpha < 90^\circ \) nên \(\cos \alpha > 0\), từ đó ta được \(\cos \alpha = \frac{{2\sqrt 2 }}{3}\).
Vậy \[P = 2\cos \alpha = \frac{{4\sqrt 2 }}{3} \approx 1,89\].
Đáp án: \(1,89\).
Lời giải
a) Đúng. Ta có \(\tan \alpha = 3\) nên \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{3}\).
b) Đúng. Ta có \(\frac{1}{{{{\cos }^2}\alpha }} = 1 + {\tan ^2}\alpha = 1 + {3^2} = 10\) \[ \Rightarrow {\cos ^2}\alpha = \frac{1}{{10}}\] \( \Leftrightarrow \left[ \begin{array}{l}{\rm{cos}}\alpha = \frac{1}{{\sqrt {10} }}\\{\rm{cos}}\alpha = - \frac{1}{{\sqrt {10} }}\end{array} \right.\).
Vì \({\rm{0}}^\circ < \alpha < 90^\circ \) nên \(\cos \alpha > 0\)\( \Rightarrow {\rm{cos}}\alpha = \frac{1}{{\sqrt {10} }} = \frac{{\sqrt {10} }}{{10}}\).
c) Sai. Vì \[{\sin ^2}\alpha + {\cos ^2}\alpha = 1\]\[ \Rightarrow {\sin ^2}\alpha = {\rm{1}} - {\cos ^2}\alpha = 1 - \frac{1}{{10}} = \frac{9}{{10}}\];
\(\cot \left( {90^\circ - \alpha } \right) = \tan \alpha = 3\).
Suy ra \(5{\sin ^2}\alpha - 3{\cos ^2}\alpha + \cot \left( {90^\circ - \alpha } \right) = 5 \cdot \frac{9}{{10}} - 3 \cdot \frac{1}{{10}} + 3 = \frac{{36}}{5}\).
d) Đúng. Vì \({\rm{tan}}\alpha = 3\) nên \(\cos \alpha \ne 0\).
Chia tử và mẫu của \(E\) cho \({\cos ^2}\alpha \ne 0\), ta được:
\(E = \frac{{\frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} - \frac{{5{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }}}}{{\frac{{2{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} + \frac{{3\sin \alpha \cos \alpha }}{{{{\cos }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }}}} = \frac{{{\rm{ta}}{{\rm{n}}^2}\alpha - 5}}{{2{\rm{ta}}{{\rm{n}}^2}\alpha + 3{\rm{tan}}\alpha + 1}}\,\)
\(E = \frac{{9 - 5}}{{18 + 9 + 1}} = \frac{4}{{28}} = \frac{1}{7} = \frac{a}{b} \Rightarrow a = 1,b = 7 \Rightarrow a + b = 8\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
