Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì \(\tan \alpha  = 1 \Rightarrow \cos \alpha  \ne 0\). Chia cả tử và mẫu cho \({\cos ^2}\alpha \) ta được:

\(B = \frac{{\left( {{{\sin }^2}\alpha  + 1} \right)\frac{1}{{{{\cos }^2}\alpha }}}}{{\left( {2{{\cos }^2}\alpha  - {{\sin }^2}\alpha } \right)\frac{1}{{{{\cos }^2}\alpha }}}} = \frac{{{{\tan }^2}\alpha  + \frac{1}{{{{\cos }^2}\alpha }}}}{{2 - {{\tan }^2}\alpha }} = \frac{{{{\tan }^2}\alpha  + {{\tan }^2}\alpha  + 1}}{{2 - {{\tan }^2}\alpha }} = 3\).

Đáp án: 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: B

Ta có \(\widehat C = 180^\circ  - \widehat A - \widehat B = 180^\circ  - 40^\circ  - 60^\circ  = 80^\circ \).

Áp dụng định lý sin: \[\frac{{BC}}{{\sin A}} = \frac{{AB}}{{\sin C}} \Rightarrow BC = \frac{{AB}}{{\sin C}} \cdot \sin A = \frac{5}{{\sin 80^\circ }} \cdot \sin 40^\circ  \approx 3,3\].

Câu 2

Lời giải

Đáp án đúng là: D

\({c^2} = {a^2} + {b^2} - 2ab\cos C\)

\({c^2} = {8^2} + {10^2} - 2 \cdot 8 \cdot 10\cos 60^\circ  = 84 \Rightarrow c = 2\sqrt {21} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP