Từ một miếng bìa hình tròn, bạn Nam cắt ra một hình tam giác \(ABC\) có độ dài các cạnh \(AB = 4\;{\rm{cm}},AC = 5\;{\rm{cm}},BC = 6\;{\rm{cm}}\) (Hình vẽ). Tính bán kính \(R\) của miếng bìa ban đầu (làm tròn kết quả đến hàng đơn vị theo đơn vị centimét).

Quảng cáo
Trả lời:
Áp dụng định lí côsin cho tam giác \(ABC\), ta có:
\(\cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB \cdot AC}} = \frac{{{4^2} + {5^2} - {6^2}}}{{2 \cdot 4 \cdot 5}} = \frac{1}{8}\).
Mà \(\widehat A < 180^\circ \) nên \(\sin A = \sqrt {1 - {{\cos }^2}A} = \sqrt {1 - \frac{1}{{64}}} = \frac{{3\sqrt 7 }}{8}\).
Áp dụng định lí sin, ta có: \[\frac{{BC}}{{\sin A}} = 2R \Rightarrow R = \frac{{BC}}{{2\sin A}} = \frac{6}{{2 \cdot \frac{{3\sqrt 7 }}{8}}} \approx 3\,\,\,{\rm{(cm)}}\].
Đáp án: 3.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[P = \sin \left( {90^\circ - \alpha } \right) - \cos \left( {180^\circ - \alpha } \right) = \cos \alpha - \left( { - \cos \alpha } \right) = 2\cos \alpha \].
Mặt khác \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Rightarrow {\cos ^2}\alpha = 1 - {\sin ^2}\alpha = 1 - {\left( {\frac{1}{3}} \right)^2} = \frac{8}{9} \Leftrightarrow \left[ \begin{array}{l}\cos \alpha = \frac{{2\sqrt 2 }}{3}\\\cos \alpha = - \frac{{2\sqrt 2 }}{3}\end{array} \right.\).
Lại có \(0^\circ < \alpha < 90^\circ \) nên \(\cos \alpha > 0\), từ đó ta được \(\cos \alpha = \frac{{2\sqrt 2 }}{3}\).
Vậy \[P = 2\cos \alpha = \frac{{4\sqrt 2 }}{3} \approx 1,89\].
Đáp án: \(1,89\).
Lời giải
a) Đúng. Ta có \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{2}\).
b) Sai. \(\tan \alpha = \frac{{\sin \alpha }}{{{\rm{cos}}\alpha }} = 2 > 0 \Rightarrow \sin \alpha \cdot {\rm{cos}}\alpha > 0\).
c) Đúng. Vì \(0^\circ < \alpha < 90^\circ \) nên \({\rm{cos}}\alpha > 0\).
Ta có \(1 + {\tan ^2}\alpha = \frac{1}{{{\rm{co}}{{\rm{s}}^2}\alpha }} \Rightarrow {\rm{co}}{{\rm{s}}^2}\alpha = \frac{1}{{1 + {2^2}}} = \frac{1}{5} \Rightarrow {\rm{cos}}\alpha = \frac{{\sqrt 5 }}{5} = \frac{1}{{\sqrt 5 }}\).
d) Sai. Ta có \(\tan \alpha = \frac{{\sin \alpha }}{{{\rm{cos}}\alpha }} \Rightarrow \sin \alpha = \tan \alpha \cdot {\rm{cos}}\alpha = \frac{{2\sqrt 5 }}{5}\).
Suy ra \({\rm{sin}}\alpha \,{\rm{ + }}\,{\rm{cos}}\alpha = \frac{{2\sqrt 5 }}{5} + \frac{{\sqrt 5 }}{5} = \frac{{3\sqrt 5 }}{5}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.