Cho tam giác \(ABC\) biết \(BC = 3\;{\rm{cm}},\,\,AC = 4{\rm{\;cm}},\widehat C = 30^\circ \).
a) \(AB \approx 3,05\,\,{\rm{(cm)}}\).
b) \(\cos A \approx 0,68\).
c) \(\widehat A \approx 77,2^\circ \).
d) \(\widehat B \approx 102,8^\circ \).
Cho tam giác \(ABC\) biết \(BC = 3\;{\rm{cm}},\,\,AC = 4{\rm{\;cm}},\widehat C = 30^\circ \).
a) \(AB \approx 3,05\,\,{\rm{(cm)}}\).
b) \(\cos A \approx 0,68\).
c) \(\widehat A \approx 77,2^\circ \).
d) \(\widehat B \approx 102,8^\circ \).
Quảng cáo
Trả lời:
a) Sai. Áp dụng định lí côsin trong tam giác, ta có: \(A{B^2} = B{C^2} + A{C^2} - 2BC \cdot AC \cdot \cos C\)
hay \(A{B^2} = {3^2} + {4^2} - 2 \cdot 3 \cdot 4 \cdot \cos 30^\circ = 25 - 12\sqrt 3 \). Do đó, \(AB \approx 2,05\,\,{\rm{(cm)}}\).
b) Đúng. Ta có \(\cos A = \frac{{A{C^2} + A{B^2} - B{C^2}}}{{2AB \cdot AC}} = \frac{{{4^2} + \left( {25 - 12\sqrt 3 } \right) - {3^2}}}{{2 \cdot 4 \cdot \sqrt {25 - 12\sqrt 3 } }} \approx 0,68\).
c) Sai. Vì \(\cos A \approx 0,68\) nên \(\widehat A \approx 47,2^\circ \).
d) Đúng. Ta có \(\widehat B = 180^\circ - \widehat A - \widehat C \approx 180^\circ - 47,2^\circ - 30^\circ = 102,8^\circ \).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
\(\,\widehat A = 15^\circ ,\,\,\widehat B = 130^\circ \Rightarrow \widehat C = 180^\circ - \widehat A - \widehat B = 35^\circ .\)\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R \Leftrightarrow \frac{a}{{\sin 15^\circ }} = \frac{b}{{\sin 130^\circ }} = \frac{6}{{\sin 35^\circ }}\)
\( \Rightarrow a \approx 2,71;b \approx 8,01\).
Lời giải
Giả sử tàu du lịch xuất phát từ vị trí \(A\), chuyển động theo hướng \(N80^\circ E\) tới vị trí \(B\) sau đó chuyển hướng \(E80^\circ S\) tới vị trí \(C\) như hình vẽ dưới đây:

Ta có \(\widehat {ABC} = 180^\circ - 10^\circ - 20^\circ = 150^\circ \).
Tàu chạy từ vị trí \(A\) đến vị trí \(B\) với vận tốc \(20\,\,{\rm{km/h}}\) trong 30 phút (tức 0,5 giờ) nên: \(AB = 20 \cdot 0,5 = 10\) (km).
Tàu chạy từ vị trí \(B\) đến vị trí \(C\) với vận tốc \(20\,\,{\rm{km/h}}\) trong 36 phút (tức 0,6 giờ) nên: \(BC = 20 \cdot 0,6 = 12\) (km).
Áp dụng định lí côsin cho tam giác \(ABC\) ta được:
\(A{C^2} = A{B^2} + B{C^2} - 2AB \cdot AC \cdot \cos \widehat {BAC} = {10^2} + {12^2} - 2 \cdot 10 \cdot 12 \cdot \cos 150^\circ \approx 452\).
Suy ra \(AC \approx \sqrt {452} \approx 21,3\,\,\,\left( {{\rm{km}}} \right)\).
Vậy khi tới đảo Cát Bà thì tàu du lịch cách vị trí xuất phát (bãi biển Đồ Sơn) một khoảng \(21,3\) km. Đáp án: 21,3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



