Câu hỏi:

05/08/2025 25 Lưu

Cho tam giác \(ABC\) biết cạnh \(BC = 137,5\;\,{\rm{cm;}}\,\widehat B = 83^\circ ;\,\,\widehat C = 57^\circ \).

a) \(\widehat A = 40^\circ \).

b) Bán kính đường tròn ngoại tiếp tam giác \(ABC\) là \(R \approx 106,96{\rm{\;cm}}\).

c) \(AB \approx 179,4\,\,{\rm{cm}}\).

d) \[AC \approx 232,12{\rm{\;cm}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Ta có \(\widehat A = 180^\circ  - \left( {\widehat B + \widehat C} \right) = 180^\circ  - \left( {83^\circ  + 57^\circ } \right) = 40^\circ \).

b)  Đúng. Theo định lí sin trong tam giác \(ABC\), ta có: \(\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} = 2R\).

Suy ra \(R = \frac{{BC}}{{2\sin A}} = \frac{{137,5}}{{2\sin 40^\circ }} \approx 106,96\;\,{\rm{cm}}\).

c) Đúng. \(AB = \frac{{BC\sin C}}{{\sin A}} = \frac{{137,5 \cdot \sin 57^\circ }}{{\sin 40^\circ }} \approx 179,4\;\,{\rm{cm}}.\)

d) Sai. \(AC = \frac{{BC\sin B}}{{\sin A}} = \frac{{137,5 \cdot \sin 83^\circ }}{{\sin 40^\circ }} \approx 212,32{\rm{\;cm}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử tàu du lịch xuất phát từ vị trí \(A\), chuyển động theo hướng \(N80^\circ E\) tới vị trí \(B\) sau đó chuyển hướng \(E80^\circ S\) tới vị trí \(C\) như hình vẽ dưới đây:

Hỏi khi đó tàu du lịch cách vị trí xuất phát bao nhiêu kilômét? (Kết quả làm tròn đến hàng phần mười). (ảnh 2)

Ta có \(\widehat {ABC} = 180^\circ  - 10^\circ  - 20^\circ  = 150^\circ \).

Tàu chạy từ vị trí \(A\) đến vị trí \(B\) với vận tốc \(20\,\,{\rm{km/h}}\) trong 30 phút  (tức 0,5 giờ) nên: \(AB = 20 \cdot 0,5 = 10\) (km).

Tàu chạy từ vị trí  \(B\) đến vị trí  \(C\) với vận tốc \(20\,\,{\rm{km/h}}\) trong 36 phút (tức 0,6 giờ) nên: \(BC = 20 \cdot 0,6 = 12\) (km).

Áp dụng định lí côsin cho tam giác \(ABC\) ta được:

\(A{C^2} = A{B^2} + B{C^2} - 2AB \cdot AC \cdot \cos \widehat {BAC} = {10^2} + {12^2} - 2 \cdot 10 \cdot 12 \cdot \cos 150^\circ  \approx 452\).

Suy ra \(AC \approx \sqrt {452}  \approx 21,3\,\,\,\left( {{\rm{km}}} \right)\).

Vậy khi tới đảo Cát Bà thì tàu du lịch cách vị trí xuất phát (bãi biển Đồ Sơn) một khoảng \(21,3\) km. Đáp án: 21,3.

Lời giải

Ta có \(B{C^2} = A{B^2} + A{C^2} - 2.AB \cdot AC \cdot \cos \widehat {BAC} = 64 + 25 - 2 \cdot 8 \cdot 5 \cdot \cos 60^\circ  = 49\).

Suy ra \(BC = 7\).

Ta có nửa chu vi của \(\Delta ABC\) là: \(p = \frac{{5 + 7 + 8}}{2} = 10\).

Diện tích của \(\Delta ABC\) là: \(S = \sqrt {10 \cdot \left( {10 - 8} \right) \cdot \left( {10 - 5} \right) \cdot \left( {10 - 7} \right)}  = 10\sqrt 3 \).

Vì \(S = \frac{1}{2}AH \cdot BC\)\( \Rightarrow AH = \frac{{2S}}{{BC}} = \frac{{2 \cdot 10\sqrt 3 }}{7} = \frac{{20\sqrt 3 }}{7} \approx 4,95\).

Đáp án: 4,95.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP