Hai bạn An và Bình cùng xuất phát từ điểm \[P\], đi theo hai hướng khác nhau và tạo với nhau một góc \(40^\circ \) để đến đích là điểm \[D\] với \[\widehat {PAD} = 100^\circ \]. Biết rằng An và Bình dừng lại để ăn trưa lần lượt tại \[A\] và \[B\] (như hình vẽ minh hoạ).

Hỏi bạn Bình phải đi bao xa nữa để đến được đích (số làm tròn đến hàng phần trăm; góc làm tròn đến hàng đơn vị)?
Hai bạn An và Bình cùng xuất phát từ điểm \[P\], đi theo hai hướng khác nhau và tạo với nhau một góc \(40^\circ \) để đến đích là điểm \[D\] với \[\widehat {PAD} = 100^\circ \]. Biết rằng An và Bình dừng lại để ăn trưa lần lượt tại \[A\] và \[B\] (như hình vẽ minh hoạ).

Hỏi bạn Bình phải đi bao xa nữa để đến được đích (số làm tròn đến hàng phần trăm; góc làm tròn đến hàng đơn vị)?
Quảng cáo
Trả lời:
Xét tam giác \[PAD\] có
\[PD = \sqrt {P{A^2} + A{D^2} - 2 \cdot PA \cdot AD \cdot \cos \widehat {PAD}} = \sqrt {{8^2} + {3^2} - 2 \cdot 8 \cdot 3 \cdot \cos 100^\circ } \approx 9,02\],
và \[\cos \widehat {APD} = \frac{{P{A^2} + P{D^2} - A{D^2}}}{{2 \cdot PA \cdot PD}} = \frac{{{8^2} + 9,{{02}^2} - {3^2}}}{{2 \cdot 8 \cdot 9,02}} \approx 0,94\] suy ra \[\widehat {APD} \approx 19^\circ \].
Xét tam giác \[PBD\] có \[\widehat {BPD} = \widehat {BPA} - \widehat {APD} \approx 40^\circ - 19^\circ = 21^\circ \],
và \[BD = \sqrt {P{B^2} + P{D^2} - 2 \cdot PB \cdot PD \cdot \cos \widehat {BPD}} \] \[ \approx 3,53\] (km).
Vậy bạn Bình phải đi khoảng \[3,53\] km nữa để đến đích.
Đáp án: \(3,53\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
\(\,\widehat A = 15^\circ ,\,\,\widehat B = 130^\circ \Rightarrow \widehat C = 180^\circ - \widehat A - \widehat B = 35^\circ .\)\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R \Leftrightarrow \frac{a}{{\sin 15^\circ }} = \frac{b}{{\sin 130^\circ }} = \frac{6}{{\sin 35^\circ }}\)
\( \Rightarrow a \approx 2,71;b \approx 8,01\).
Lời giải
Giả sử tàu du lịch xuất phát từ vị trí \(A\), chuyển động theo hướng \(N80^\circ E\) tới vị trí \(B\) sau đó chuyển hướng \(E80^\circ S\) tới vị trí \(C\) như hình vẽ dưới đây:

Ta có \(\widehat {ABC} = 180^\circ - 10^\circ - 20^\circ = 150^\circ \).
Tàu chạy từ vị trí \(A\) đến vị trí \(B\) với vận tốc \(20\,\,{\rm{km/h}}\) trong 30 phút (tức 0,5 giờ) nên: \(AB = 20 \cdot 0,5 = 10\) (km).
Tàu chạy từ vị trí \(B\) đến vị trí \(C\) với vận tốc \(20\,\,{\rm{km/h}}\) trong 36 phút (tức 0,6 giờ) nên: \(BC = 20 \cdot 0,6 = 12\) (km).
Áp dụng định lí côsin cho tam giác \(ABC\) ta được:
\(A{C^2} = A{B^2} + B{C^2} - 2AB \cdot AC \cdot \cos \widehat {BAC} = {10^2} + {12^2} - 2 \cdot 10 \cdot 12 \cdot \cos 150^\circ \approx 452\).
Suy ra \(AC \approx \sqrt {452} \approx 21,3\,\,\,\left( {{\rm{km}}} \right)\).
Vậy khi tới đảo Cát Bà thì tàu du lịch cách vị trí xuất phát (bãi biển Đồ Sơn) một khoảng \(21,3\) km. Đáp án: 21,3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



