Các mệnh đề sau đúng hay sai?
a) Cho đường cong \(\left( C \right):y = \frac{{2x + 3}}{{x - 1}}\) và \(M\) là một điểm nằm trên \(\left( C \right)\). Giả sử \({d_1}\), \({d_2}\) tương ứng là các khoảng cách từ \(M\) đến hai tiệm cận của \(\left( C \right)\), khi đó \({d_1}.{d_2}\) bằng 5
Các mệnh đề sau đúng hay sai?
a) Cho đường cong \(\left( C \right):y = \frac{{2x + 3}}{{x - 1}}\) và \(M\) là một điểm nằm trên \(\left( C \right)\). Giả sử \({d_1}\), \({d_2}\) tương ứng là các khoảng cách từ \(M\) đến hai tiệm cận của \(\left( C \right)\), khi đó \({d_1}.{d_2}\) bằng 5
Quảng cáo
Trả lời:

a) Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} y = + \infty \)\( \Rightarrow x = 1\) là tiệm cận đứng; \(\mathop {\lim }\limits_{x \to + \infty } y = 2\)\( \Rightarrow y = 2\) là tiệm cận ngang.
\(M \in \left( C \right)\)\( \Rightarrow M\left( {a;\,2 + \frac{5}{{a - 1}}} \right)\) với \(a \ne 1\).
Khoảng cách từ \(M\) đến tiệm cận đứng: \({d_1} = \frac{{\left| {a - 1} \right|}}{{\sqrt 1 }} = \left| {a - 1} \right|\),
Khoảng cách từ \(M\) đến tiệm ngang \({d_2} = \frac{{\left| {2 + \frac{5}{{a - 1}} - 2} \right|}}{{\sqrt {{0^2} + {1^2}} }} = \left| {\frac{5}{{a - 1}}} \right|\).
Xét \({d_1}.{d_2} = \left| {a - 1} \right|.\left| {\frac{5}{{a - 1}}} \right| = \left| {\left( {a - 1} \right).\frac{5}{{a - 1}}} \right| = 5\). Chọn Đúng
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Tập xác định \(D = \mathbb{R}\).
Ta có \(\mathop {\lim }\limits_{x \to + \infty } y = 1\) và \(\mathop {\lim }\limits_{x \to - \infty } y = - 1\) nên đồ thị hàm số có hai đường tiệm cận ngang. Chọn Đúng
Lời giải
b) Ta có \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2} + x - 2}}{{x - 2}} = + \infty ;\)\(\mathop {\lim }\limits_{x \to 2 - } \frac{{{x^2} + x - 2}}{{x - 2}} = - \infty \)
Suy ra hàm số có tiệm cận đứng là \(x = 2\). Chọn Đúng
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.