Quảng cáo
Trả lời:
1. Tập xác định: D = \[\mathbb{R}\] \ {1}. |
2. Sự biến thiên: |
• Chiều biến thiên: |
Đạo hàm \[y' = \frac{{{x^2} - 2x}}{{{{\left( {x - 1} \right)}^2}}}\]. Ta có y' = 0 ⇔ x = 0 hoặc x = 2. |
Trên các khoảng (−∞; 0) và (2; +∞), y' > 0 nên hàm số đồng biến trên mỗi khoảng đó. |
Trên các khoảng (0; 1) và (1; 2), y' < 0 nên hàm số nghịch biến trên mỗi khoảng đó. |
Cực trị: |
Hàm số đạt cực tiểu tại x = 2 và yCT = 6. |
Hàm số đạt cực đại tại x = 0 và yCĐ = 2. |
Các giới hạn tại vô cực và tiệm cận: |
Ta có: \[\mathop {\lim }\limits_{x \to - \infty } y = - \infty ;\mathop {\lim }\limits_{x \to + \infty } y = + \infty \] |
Ta có: \[a = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} + 2x - 2}}{{{x^2} - x}} = 1\] và \[b = \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{{x^2} + 2x - 2}}{{x - 1}} - x} \right) = 3\]. Suy ra đường thẳng y = x + 3 là tiệm cận xiên của đồ thị hàm số. |
Ta có \[\mathop {\lim }\limits_{x \to {1^ + }} y = + \infty ;\mathop {\lim }\limits_{x \to {1^ - }} y = - \infty \]. Suy ra đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số. |
Bảng biến thiên: ![]() 3. Đồ thị:
![]() Ta có y = 0 ⇔ x2 + 2x – 2 = 0 ⇔ \[x = - 1 + \sqrt 3 \]hoặc \[x = - 1 - \sqrt 3 \]. Vậy đồ thị hàm số giao với trục Ox tại điểm (\[ - 1 + \sqrt 3 \];0) và điểm (\[ - 1 - \sqrt 3 \];0). Đồ thị hàm số giao với trục Oy tại điểm (0; 2). Đồ thị hàm số được biểu diễn trên Hình vẽ. Tâm đối xứng của đồ thị hàm số là điểm I(1; 4). Các trục đối xứng của đồ thị hàm số là hai đường phân giác của các góc tạo bởi hai đường tiệm cận x = 1 và y = x + 3. |
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ