Câu hỏi:

07/08/2025 28 Lưu

Gọi \[AN,{\rm{ }}CM\] là các đường trung tuyến của tam giác \[ABC\] và G là trọng tâm.

a) \[\overrightarrow {AN}  = \overrightarrow {AB}  + \overrightarrow {AC} \,.\]

b) \[\overrightarrow {CM}  = \frac{3}{2}\overrightarrow {GC} \,.\]

c) \[\overrightarrow {MN}  = \frac{1}{2}\left( {\overrightarrow {BC}  - \overrightarrow {BA} } \right)\,.\]

d) \[\overrightarrow {AB}  = \frac{4}{3}\overrightarrow {AN}  + \frac{2}{3}\overrightarrow {CM} \].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

c (ảnh 1)

a) Sai. Theo tính chất trung điểm đoạn thẳng BC ta có \[\overrightarrow {AN}  = \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right)\].

b) Sai. Vì G là trọng tâm tam giác \[ABC\] nên \[\overrightarrow {CM}  = \frac{3}{2}\overrightarrow {CG} \].

c) Đúng. Do M, N lần lượt là trung điểm của cạnh AB và BC nên MN là đường trung bình của tam giác \[ABC\], do đó ta có \[\overrightarrow {MN}  = \frac{1}{2}\overrightarrow {AC}  = \frac{1}{2}\left( {\overrightarrow {BC}  - \overrightarrow {BA} } \right)\].

d) Đúng. Ta có \[\overrightarrow {AN}  = \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right) = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC} \];

\[\overrightarrow {CM}  = \overrightarrow {CA}  + \overrightarrow {AM}  \Rightarrow \frac{1}{2}\overrightarrow {CM}  = \frac{1}{2}\overrightarrow {CA}  + \frac{1}{2}\overrightarrow {AM} \].

Suy ra

\[\overrightarrow {AN}  + \frac{1}{2}\overrightarrow {CM}  = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC}  + \frac{1}{2}\overrightarrow {CA}  + \frac{1}{2}\overrightarrow {AM}  = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC}  - \frac{1}{2}\overrightarrow {AC}  + \frac{1}{2} \cdot \frac{1}{2}\overrightarrow {AB}  = \frac{3}{4}\overrightarrow {AB} \].

Do đó \[\overrightarrow {AB}  = \frac{4}{3}\overrightarrow {AN}  + \frac{2}{3}\overrightarrow {CM} \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {AB} = \frac{4}{3}\overrightarrow {BN} - \frac{2}{3}\overrightarrow {CP} \).                                     
B. \(\overrightarrow {AB} = - \frac{4}{3}\overrightarrow {BN} + \frac{2}{3}\overrightarrow {CP} \).
C. \(\overrightarrow {AB} = - \frac{4}{3}\overrightarrow {BN} - \frac{2}{3}\overrightarrow {CP} \).                                     
D. \(\overrightarrow {AB} = - \frac{2}{3}\overrightarrow {BN} - \frac{4}{3}\overrightarrow {CP} \).

Lời giải

Đáp án đúng là: C

c (ảnh 1)

Gọi \(G\) là trọng tâm của tam giác \(ABC\).

Ta có \(\overrightarrow {AB}  = \overrightarrow {AM}  + \overrightarrow {MB}  = 3\overrightarrow {GM}  + \left( {\overrightarrow {GB}  - \overrightarrow {GM} } \right) = 2\overrightarrow {GM}  + \overrightarrow {GB} \)

\( = \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GB}  = 2\overrightarrow {GB}  + \overrightarrow {GC}  =  - \frac{4}{3}\overrightarrow {BN}  - \frac{2}{3}\overrightarrow {CP} \).

Câu 2

A. \(\overrightarrow {MN} = 7\overrightarrow a \).                                     
B. \(\overrightarrow {MN} = - 5\overrightarrow a \).   
C. \(\overrightarrow {MN} = - 7\overrightarrow a \).   
D. \(\overrightarrow {MN} = - 5\overrightarrow a \).

Lời giải

Đáp án đúng là: C

Ta có \(\overrightarrow {MN}  = \overrightarrow {ON}  - \overrightarrow {OM}  =  - 4\overrightarrow a  - 3\overrightarrow a  =  - 7\overrightarrow a \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP