Câu hỏi:

07/08/2025 32 Lưu

Cho tam giác \(ABC\)\(AB = 2\)cm, \(BC = 4\)cm, \(CA = 5\)cm. Tính \(\overrightarrow {CA} \cdot \overrightarrow {CB} \). 

A. \(\overrightarrow {CA} \cdot \overrightarrow {CB} = 37\).                                                 
B. \(\overrightarrow {CA} \cdot \overrightarrow {CB} = \frac{{37}}{2}\).                                 
C. \(\overrightarrow {CA} \cdot \overrightarrow {CB} = \frac{{37}}{{20}}\).                                                 
D. \(\overrightarrow {CA} \cdot \overrightarrow {CB} = - \frac{{37}}{2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

C (ảnh 1)

Ta có \[\left( {\overrightarrow {CA} ,\overrightarrow {CB} } \right) = \widehat {ACB}\].

Áp dụng định lí côsin cho tam giác \(ABC\) có

\(\cos \widehat {ACB} = \frac{{A{C^2} + B{C^2} - A{B^2}}}{{2AC \cdot BC}}\) \( = \frac{{{5^2} + {4^2} - {2^2}}}{{2 \cdot 5 \cdot 4}} = \frac{{37}}{{40}}\).

Do đó \(\overrightarrow {CA}  \cdot \overrightarrow {CB}  = \left| {\overrightarrow {CA} } \right| \cdot \left| {\overrightarrow {CB} } \right|\cos \left( {\overrightarrow {CA} ,\overrightarrow {CB} } \right)\)\( = CA \cdot CB \cdot \cos \widehat {ACB}\)\( = 5 \cdot 4 \cdot \frac{{37}}{{40}} = \frac{{37}}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(5400\,\,{\rm{(J)}}\).                                      
B. \(4500\,\,{\rm{(J)}}\).     
C. \(1500\,\,{\rm{(J)}}\).     
D. \(450\,{\rm{(J)}}\).

Lời giải

Đáp án đúng là: B

Công sinh bởi lực \(\vec F\) được tính bằng công thức

\(A = \overrightarrow F  \cdot \overrightarrow d  = \left| {\overrightarrow F } \right| \cdot \left| {\overrightarrow d } \right|{\rm{cos}}\left( {\overrightarrow F ,\overrightarrow d } \right) = 90 \cdot 100 \cdot {\rm{cos}}60^\circ  = 4500\,\,\left( {\rm{J}} \right)\).

Vậy công sinh bởi lực \(\vec F\) có độ lớn bằng 4500 (J).

Lời giải

Ta có \[\overrightarrow a  \cdot \overrightarrow b  = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 3 \cdot 2 \cdot \cos 120^\circ  =  - 3\].

\[{\left| {\overrightarrow a  - 2\overrightarrow b } \right|^2} = {\left( {\overrightarrow a  - 2\overrightarrow b } \right)^2} = {\overrightarrow a ^2} - 4\overrightarrow a  \cdot \overrightarrow b  + 4{\overrightarrow b ^2} = {\left| {\overrightarrow a } \right|^2} - 4\overrightarrow a  \cdot \overrightarrow b  + 4{\left| {\overrightarrow b } \right|^2} = {3^2} - 4 \cdot \left( { - 3} \right) + 4 \cdot {2^2} = 37\]

\[ \Rightarrow \left| {\overrightarrow a  - 2\overrightarrow b } \right| = \sqrt {37}  \approx 6,1\].

Đáp án: 6,1.

Câu 7

A. \(\alpha = 30 \circ \).                                     
B. \(\alpha = 45 \circ \).                       
C. \(\alpha = 60 \circ \).                                     
D. \(\alpha = 120 \circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP