Câu hỏi:

07/08/2025 22 Lưu

Cho tam giác \(ABC\)\(AB = 2\)cm, \(BC = 4\)cm, \(CA = 5\)cm. Tính \(\overrightarrow {CA} \cdot \overrightarrow {CB} \). 

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

C (ảnh 1)

Ta có \[\left( {\overrightarrow {CA} ,\overrightarrow {CB} } \right) = \widehat {ACB}\].

Áp dụng định lí côsin cho tam giác \(ABC\) có

\(\cos \widehat {ACB} = \frac{{A{C^2} + B{C^2} - A{B^2}}}{{2AC \cdot BC}}\) \( = \frac{{{5^2} + {4^2} - {2^2}}}{{2 \cdot 5 \cdot 4}} = \frac{{37}}{{40}}\).

Do đó \(\overrightarrow {CA}  \cdot \overrightarrow {CB}  = \left| {\overrightarrow {CA} } \right| \cdot \left| {\overrightarrow {CB} } \right|\cos \left( {\overrightarrow {CA} ,\overrightarrow {CB} } \right)\)\( = CA \cdot CB \cdot \cos \widehat {ACB}\)\( = 5 \cdot 4 \cdot \frac{{37}}{{40}} = \frac{{37}}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[\overrightarrow a  \cdot \overrightarrow b  = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 3 \cdot 2 \cdot \cos 120^\circ  =  - 3\].

\[{\left| {\overrightarrow a  - 2\overrightarrow b } \right|^2} = {\left( {\overrightarrow a  - 2\overrightarrow b } \right)^2} = {\overrightarrow a ^2} - 4\overrightarrow a  \cdot \overrightarrow b  + 4{\overrightarrow b ^2} = {\left| {\overrightarrow a } \right|^2} - 4\overrightarrow a  \cdot \overrightarrow b  + 4{\left| {\overrightarrow b } \right|^2} = {3^2} - 4 \cdot \left( { - 3} \right) + 4 \cdot {2^2} = 37\]

\[ \Rightarrow \left| {\overrightarrow a  - 2\overrightarrow b } \right| = \sqrt {37}  \approx 6,1\].

Đáp án: 6,1.

Lời giải

C (ảnh 2)

Dựng hình bình hành \(ABCM.\) Ta có \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  = \overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MB} \).

Suy ra độ lớn của tổng hợp lực tác dụng lên vật là: \[\left| {\overrightarrow F } \right| = \left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {MB} } \right| = MB\].

Xét tam giác \(CMB\) có

\(M{B^2} = M{C^2} + B{C^2} - 2MC \cdot BC \cdot \cos \widehat {MCB} = {50^2} + {30^2} - 2 \cdot 50 \cdot 30 \cdot \cos 120^\circ  = 4900\).

Suy ra \(\left| {\overrightarrow F } \right| = \sqrt {4900}  = 70\) N.

Góc tạo bởi lực \(\vec F\) và phương chuyển động là \(\widehat {BMC}\) với

\(\cos \widehat {BMC} = \frac{{M{B^2} + M{C^2} - B{C^2}}}{{2MB \cdot MC}} = \frac{{{{70}^2} + {{50}^2} - {{30}^2}}}{{2 \cdot 70 \cdot 50}} = \frac{{13}}{{14}}\).

Gọi \(MD\) là quãng đường vật di chuyển, khi đó công sinh bởi lực \(\vec F\) là:

\(A = \overrightarrow F  \cdot \overrightarrow {MD}  = \left| {\overrightarrow F } \right| \cdot \left| {\overrightarrow {MD} } \right| \cdot \cos \widehat {BMC} = 70 \cdot 28 \cdot \frac{{13}}{{14}} = 1820\;\)J.

Đáp án: 1820.

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP