Cho tam giác \(ABC\) vuông tại \(A\) có \(AB = a,BC = 2a\).
a) \(\widehat {ACB} = 60^\circ \).
b) \(\overrightarrow {BA} \cdot \overrightarrow {BC} = {a^2}\).
c) \(\overrightarrow {BC} \cdot \overrightarrow {CA} = 3{a^2}.\)
d) \(\overrightarrow {AB} \cdot \overrightarrow {BC} + \overrightarrow {BC} \cdot \overrightarrow {CA} + \overrightarrow {CA} \cdot \overrightarrow {AB} = - 4{a^2}\).
Cho tam giác \(ABC\) vuông tại \(A\) có \(AB = a,BC = 2a\).
a) \(\widehat {ACB} = 60^\circ \).
b) \(\overrightarrow {BA} \cdot \overrightarrow {BC} = {a^2}\).
c) \(\overrightarrow {BC} \cdot \overrightarrow {CA} = 3{a^2}.\)
d) \(\overrightarrow {AB} \cdot \overrightarrow {BC} + \overrightarrow {BC} \cdot \overrightarrow {CA} + \overrightarrow {CA} \cdot \overrightarrow {AB} = - 4{a^2}\).
Quảng cáo
Trả lời:
a) Sai. Xét tam giác vuông \(ABC\) có: \(AC = \sqrt {B{C^2} - A{B^2}} = \sqrt {{{\left( {2a} \right)}^2} - {a^2}} = a\sqrt 3 \),
\(\cos \widehat {ABC} = \frac{{AB}}{{BC}} = \frac{a}{{2a}} = \frac{1}{2}\) \( \Rightarrow \widehat {ABC} = 60^\circ \Rightarrow \widehat {ACB} = 30^\circ \).
b) Đúng. Ta có \(\overrightarrow {BA} \cdot \overrightarrow {BC} = \left| {\overrightarrow {BA} } \right| \cdot \left| {\overrightarrow {BC} } \right| \cdot \cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = BA \cdot BC \cdot \cos \widehat {ABC} = a \cdot 2a \cdot \frac{1}{2} = {a^2}\).
c) Sai. Ta có \(\overrightarrow {BC} \cdot \overrightarrow {CA} = - \overrightarrow {CB} \cdot \overrightarrow {CA} = - \left| {\overrightarrow {CB} } \right| \cdot \left| {\overrightarrow {CA} } \right|\cos \widehat {ACB}\)
\( = - CB \cdot CA \cdot \cos 30^\circ = - 2a \cdot a\sqrt 3 \cdot \frac{{\sqrt 3 }}{2} = - 3{a^2}.\)
d) Đúng. Vì tam giác \(ABC\) vuông tại \(A\) nên \(\overrightarrow {CA} \cdot \overrightarrow {AB} = 0\).
Ta có \(\overrightarrow {AB} \cdot \overrightarrow {BC} = - \overrightarrow {BA} \cdot \overrightarrow {BC} = - {a^2},\overrightarrow {BC} \cdot \overrightarrow {CA} = - 3{a^2}\).
Suy ra \(\overrightarrow {AB} \cdot \overrightarrow {BC} + \overrightarrow {BC} \cdot \overrightarrow {CA} + \overrightarrow {CA} \cdot \overrightarrow {AB} = - {a^2} - 3{a^2} = - 4{a^2}\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: B
Công sinh bởi lực \(\vec F\) được tính bằng công thức
\(A = \overrightarrow F \cdot \overrightarrow d = \left| {\overrightarrow F } \right| \cdot \left| {\overrightarrow d } \right|{\rm{cos}}\left( {\overrightarrow F ,\overrightarrow d } \right) = 90 \cdot 100 \cdot {\rm{cos}}60^\circ = 4500\,\,\left( {\rm{J}} \right)\).
Vậy công sinh bởi lực \(\vec F\) có độ lớn bằng 4500 (J).
Lời giải

Dựng hình bình hành \(ABCM.\) Ta có \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} = \overrightarrow {MA} + \overrightarrow {MC} = \overrightarrow {MB} \).
Suy ra độ lớn của tổng hợp lực tác dụng lên vật là: \[\left| {\overrightarrow F } \right| = \left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {MB} } \right| = MB\].
Xét tam giác \(CMB\) có
\(M{B^2} = M{C^2} + B{C^2} - 2MC \cdot BC \cdot \cos \widehat {MCB} = {50^2} + {30^2} - 2 \cdot 50 \cdot 30 \cdot \cos 120^\circ = 4900\).
Suy ra \(\left| {\overrightarrow F } \right| = \sqrt {4900} = 70\) N.
Góc tạo bởi lực \(\vec F\) và phương chuyển động là \(\widehat {BMC}\) với
\(\cos \widehat {BMC} = \frac{{M{B^2} + M{C^2} - B{C^2}}}{{2MB \cdot MC}} = \frac{{{{70}^2} + {{50}^2} - {{30}^2}}}{{2 \cdot 70 \cdot 50}} = \frac{{13}}{{14}}\).
Gọi \(MD\) là quãng đường vật di chuyển, khi đó công sinh bởi lực \(\vec F\) là:
\(A = \overrightarrow F \cdot \overrightarrow {MD} = \left| {\overrightarrow F } \right| \cdot \left| {\overrightarrow {MD} } \right| \cdot \cos \widehat {BMC} = 70 \cdot 28 \cdot \frac{{13}}{{14}} = 1820\;\)J.
Đáp án: 1820.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



