Cho tam giác \(ABC\) vuông tại \(A\) có \(\widehat B = 30^\circ ,AC = 2\). Gọi \(M\) là trung điểm của \(BC.\) Tính giá trị của biểu thức \(P = \overrightarrow {AM} \cdot \overrightarrow {BM} .\)
Quảng cáo
Trả lời:
Ta có \(\Delta ABC\) vuông tại \(A\) có \(AB = \frac{{AC}}{{\tan B}} = \frac{2}{{\tan 30^\circ }} = 2\sqrt 3 .\)
Suy ra \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{{\left( {2\sqrt 3 } \right)}^2} + {2^2}} = 4.\)
\(P = \overrightarrow {AM} \cdot \overrightarrow {BM} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) \cdot \frac{1}{2}\overrightarrow {BC} = \frac{1}{4}\left( {\overrightarrow {AB} \cdot \overrightarrow {BC} + \overrightarrow {AC} \cdot \overrightarrow {BC} } \right)\)
\( = \frac{1}{4}\left( { - AB \cdot BC \cdot \cos B + AC \cdot BC \cdot \cos C} \right)\)\( = \frac{1}{4}\left( { - 2\sqrt 3 \cdot 4 \cdot \cos 30^\circ + 2 \cdot 4 \cdot \cos 60^\circ } \right) = - 2.\)
Đáp án: −2.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai. Ta có \(\overrightarrow {CM} = \overrightarrow {BM} - \overrightarrow {BC} = \frac{1}{2}\overrightarrow {BA} - \overrightarrow {BC} \).
b) Sai. Vì \(G\) là trọng tâm của tam giác \(ACM\) nên
\(3\overrightarrow {BG} = \overrightarrow {BA} + \overrightarrow {BM} + \overrightarrow {BC} = \overrightarrow {BA} + \frac{1}{2}\overrightarrow {BA} + \overrightarrow {BC} = \frac{3}{2}\overrightarrow {BA} + \overrightarrow {BC} \Rightarrow \overrightarrow {BG} = \frac{1}{2}\overrightarrow {BA} + \frac{1}{3}\overrightarrow {BC} .\)
c) Đúng. Vì \(ABCD\) là hình chữ nhật nên \(BA \bot BC\), suy ra \(\overrightarrow {BC} \cdot \overrightarrow {BA} = 0\).
d) Sai. Ta có \(\overrightarrow {BG} \cdot \overrightarrow {CM} = \left( {\frac{1}{2}\overrightarrow {BA} + \frac{1}{3}\overrightarrow {BC} } \right) \cdot \left( {\frac{1}{2}\overrightarrow {BA} - \overrightarrow {BC} } \right) = \frac{1}{4}{\overrightarrow {BA} ^2} - \frac{1}{3}\overrightarrow {BA} \cdot \overrightarrow {BC} - \frac{1}{3}{\overrightarrow {BC} ^2}\)
\( = \frac{1}{4} \cdot {\left( {4a} \right)^2} - \frac{1}{3} \cdot 0 - \frac{1}{3} \cdot {\left( {3a} \right)^2} = {a^2}.\) (\(BC = AD = 3a\)).
Lời giải
Ta có \[\overrightarrow a \cdot \overrightarrow b = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 3 \cdot 2 \cdot \cos 120^\circ = - 3\].
\[{\left| {\overrightarrow a - 2\overrightarrow b } \right|^2} = {\left( {\overrightarrow a - 2\overrightarrow b } \right)^2} = {\overrightarrow a ^2} - 4\overrightarrow a \cdot \overrightarrow b + 4{\overrightarrow b ^2} = {\left| {\overrightarrow a } \right|^2} - 4\overrightarrow a \cdot \overrightarrow b + 4{\left| {\overrightarrow b } \right|^2} = {3^2} - 4 \cdot \left( { - 3} \right) + 4 \cdot {2^2} = 37\]
\[ \Rightarrow \left| {\overrightarrow a - 2\overrightarrow b } \right| = \sqrt {37} \approx 6,1\].
Đáp án: 6,1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.