Một nhà sản xuất trung bình bán được 1000 ti vi màn hình phẳng mỗi tuần với giá 14 triệu đồng một chiếc. Một cuộc khảo sát thị trường chỉ ra rằng nếu cứ giảm giá bán 500 nghìn đồng, số lượng ti vi bán ra sẽ tăng thêm khoảng 100 ti vi mỗi tuần.
c) Nếu hàm chi phí hằng tuần là \(C\left( x \right) = 12000 - 3x\) (triệu đồng), trong đó \(x\) là số ti vi bán ra trong tuần, vậy có \[2300\] ti vi được bán ra thì lợi nhuận là cao nhất.
Một nhà sản xuất trung bình bán được 1000 ti vi màn hình phẳng mỗi tuần với giá 14 triệu đồng một chiếc. Một cuộc khảo sát thị trường chỉ ra rằng nếu cứ giảm giá bán 500 nghìn đồng, số lượng ti vi bán ra sẽ tăng thêm khoảng 100 ti vi mỗi tuần.
c) Nếu hàm chi phí hằng tuần là \(C\left( x \right) = 12000 - 3x\) (triệu đồng), trong đó \(x\) là số ti vi bán ra trong tuần, vậy có \[2300\] ti vi được bán ra thì lợi nhuận là cao nhất.
Quảng cáo
Trả lời:
c) Sai: Doanh thu bán hàng của \(x\) sản phẩm là: \(R\left( x \right) = x.p\left( x \right) = x.\left( {\frac{{ - 1}}{{200}}x + 19} \right) = \frac{{ - {x^2}}}{{200}} + 19x\) (triệu đồng). Do đó, hàm số thể hiện lợi nhuận thu được khi bán \[x\] sản phẩm là:
\(P\left( x \right) = R\left( x \right) - C\left( x \right) = \frac{{ - {x^2}}}{{200}} + 19x - 12000 + 3x = \frac{{ - {x^2}}}{{200}} + 22x - 12000\) (triệu đồng).
Để lợi nhuận là lớn nhất thì \[P\left( x \right)\] là lớn nhất. Ta có: \(P'\left( x \right) = \frac{{ - x}}{{100}} + 22;\,\,\,P'\left( x \right) = 0 \Leftrightarrow x = 2200\)
Bảng biến thiên:

Vậy có \[2200\] ti vi được bán ra thì lợi nhuận là cao nhất.
Số ti vi mua tăng lên là: \(2200 - 1000 = 1200\) (chiếc)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng: Vào đầu năm 1980, ta có \(t = 10;f\left( {10} \right) = 18\). Vậy số dân của thị trấn vào đầu năm 1980 là 18 nghìn người.
Vào đầu năm 1995 ta có \(t = 25;f\left( {25} \right) = 22\).
Số dân của thị trấn vào đầu năm 1995 là 22 nghìn người.
Lời giải
a) Sai : Do \(x\) là độ dài của đoạn dây cuộn thành hình tròn \(\left( {0 < x < a} \right)\).
Suy ra chiều dài đoạn còn lại là \(a - x\).
Chu vi đường tròn: \(2\pi r = x\)\( \Rightarrow r = \frac{x}{{2\pi }}\). Diện tích hình tròn: \({S_1} = \pi .{r^2}\)\( = \frac{{{x^{\rm{2}}}}}{{4\pi }}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.