Một sợi dây kim loại dài \(a\) \(\left( {{\rm{cm}}} \right)\). Người ta cắt đoạn dây đó thành hai đoạn có độ dài \(x\) \(\left( {{\rm{cm}}} \right)\)được uốn thành đường tròn và đoạn còn lại được uốn thành hình vuông \(\left( {a > x > 0} \right).\)
a) Bán kính đường tròn: \(r = \frac{x}{\pi }\).
Một sợi dây kim loại dài \(a\) \(\left( {{\rm{cm}}} \right)\). Người ta cắt đoạn dây đó thành hai đoạn có độ dài \(x\) \(\left( {{\rm{cm}}} \right)\)được uốn thành đường tròn và đoạn còn lại được uốn thành hình vuông \(\left( {a > x > 0} \right).\)

a) Bán kính đường tròn: \(r = \frac{x}{\pi }\).
Quảng cáo
Trả lời:

a) Sai : Do \(x\) là độ dài của đoạn dây cuộn thành hình tròn \(\left( {0 < x < a} \right)\).
Suy ra chiều dài đoạn còn lại là \(a - x\).
Chu vi đường tròn: \(2\pi r = x\)\( \Rightarrow r = \frac{x}{{2\pi }}\). Diện tích hình tròn: \({S_1} = \pi .{r^2}\)\( = \frac{{{x^{\rm{2}}}}}{{4\pi }}\).
Câu hỏi cùng đoạn
Câu 2:
b) Diện tích hình vuông: \({\left( {\frac{{a - x}}{4}} \right)^2}\).
Lời giải của GV VietJack
Câu 3:
c) Tổng diện tích hai hình: \(\frac{{\left( {4 + \pi } \right).{x^2} - 2a\pi x + \pi {a^2}}}{{16\pi }}\).
c) Tổng diện tích hai hình: \(\frac{{\left( {4 + \pi } \right).{x^2} - 2a\pi x + \pi {a^2}}}{{16\pi }}\).
Lời giải của GV VietJack
c) Đúng: Tổng diện tích hai hình: \(S = \frac{{{x^2}}}{{4\pi }} + {\left( {\frac{{a - x}}{4}} \right)^2}\)\( = \frac{{\left( {4 + \pi } \right).{x^2} - 2a\pi x + \pi {a^2}}}{{16\pi }}\).
Đạo hàm: \(S' = \frac{{\left( {4 + \pi } \right).x - a\pi }}{{8\pi }}\); \(S' = 0\)\( \Leftrightarrow x = \frac{{a\pi }}{{4 + \pi }}\).
Câu 4:
d) Khi \(x = \frac{{a\pi }}{{2 + \pi }}\) thì hình vuông và hình tròn tương ứng có tổng diện tích nhỏ nhất.
d) Khi \(x = \frac{{a\pi }}{{2 + \pi }}\) thì hình vuông và hình tròn tương ứng có tổng diện tích nhỏ nhất.
Lời giải của GV VietJack
d) Sai: Hàm \(S\) chỉ có một cực trị và là cực tiểu tại \(x = \frac{{a\pi }}{{4 + \pi }}\) suy ra \({S_{\min }} \Leftrightarrow \)\(x = \frac{{a\pi }}{{4 + \pi }}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng: Vào đầu năm 1980, ta có \(t = 10;f\left( {10} \right) = 18\). Vậy số dân của thị trấn vào đầu năm 1980 là 18 nghìn người.
Vào đầu năm 1995 ta có \(t = 25;f\left( {25} \right) = 22\).
Số dân của thị trấn vào đầu năm 1995 là 22 nghìn người.
Lời giải

a) Đúng: Đường cao lăng trụ là \(AD = AB = 30{\rm{cm}}\)không đổi. Để thể tích lăng trụ lớn nhất chỉ cần diện tích đáy lớn nhất.
Gọi \(I\) là trung điểm cạnh \(EG\) \( \Rightarrow AI \bot EG\) trong tam giác \[AEG\]\( \Rightarrow IG = 15 - x,\) \(\left( {0 < x < 15} \right)\)
Ta có:\[AI = \sqrt {{x^2} - {{\left( {\frac{{30 - 2x}}{2}} \right)}^2}} = \sqrt {{x^2} - {{\left( {15 - x} \right)}^2}} \] \[ = \sqrt {30x - 225} ,\,x \in \left( {\frac{{15}}{2};15} \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.