Câu hỏi:

19/08/2025 148 Lưu

Một tấm bìa hình vuông có diện tích \(900\,{\rm{c}}{{\rm{m}}^2}\). Người ta cắt ở bốn góc của tấm bìa đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng \(x\) cm rồi gập tấm bìa lại như hình vẽ bên để được một cái hộp không nắp có dạng hình hộp chữ nhật. Tìm thể tích lớn nhất mà hình hộp chữ nhật có thể thu được?

(Trả lời ngắn) Một tấm bìa hình vuông có diện tích 900 cm^2. Người ta cắt ở bốn góc của tấm bìa đó bốn hình vuông bằng nhau (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cạnh của tấm bìa là \[a = \sqrt S  = \sqrt {900}  = 30\,\,{\rm{cm}}\], đáy sẽ là hình vuông có cạnh bằng \(30 - 2x\).

Thể tích thu được là: \(V = {\left( {30 - 2x} \right)^2}x = f\left( x \right)\) với \(0 \le x \le \frac{a}{1} = 15\)

Dễ dàng tính được: \({V_{{\rm{max}}}} = \max f\left( x \right) = f\left( 5 \right) = 2000\,\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi độ dài đoạn dây gấp tam giác đều là \(x\) thì độ dài đoạn dây gấp hình vuông là \(60 - x\)(mét)

(Trả lời ngắn) Cắt một đoạn dây dài  thành hai đoạn dây, đoạn dây thứ nhất gấp thành một tam giác đều có diện tích s1 (ảnh 2)

Khi đó \(x = 3a \Leftrightarrow a = \frac{x}{3} \Rightarrow {S_1} = \frac{{{a^2}\sqrt 3 }}{4} = \frac{{{x^2}\sqrt 3 }}{{36}}\)

Mặt khác: \(60 - x = 4b \Rightarrow b = \frac{{60 - x}}{4} \Rightarrow {S^2} = {b^2} = {\left( {\frac{{60 - x}}{4}} \right)^2}\)

Khi đó \({S_1} + {S_2} = \frac{{{x^2}\sqrt 3 }}{{36}} + {\left( {\frac{{60 - x}}{4}} \right)^2} \Leftrightarrow f\left( x \right) = \frac{{\left( {9 + 4\sqrt 3 } \right){x^2} - 1080x + 32400}}{{144}}\)

Dễ dàng tính được \({\left( {{S_1} + {S_2}} \right)_{\min }} = \min \,f\left( x \right) = f\left( {\frac{{540}}{{9 + 4\sqrt 3 }}} \right) \approx 97,87\,\left( {{{\rm{m}}^2}} \right)\).

Lời giải

Gọi \(x\) là số lần giảm \(0,25\$ \). Cước thuê bao hàng tháng lúc này là \(40 - 0,25x\) với \(0 \le x \le 160\) (do mức cước không thể âm), và số thuê bao mới là \(1000x\).

Do đó, tổng số thuê bao là \(100000 + 1000x\).

Hàm doanh thu được cho bởi R = (số thuê bao) x (cước mỗi thuê bao trả)

\[R = \left( {100000 + 1000x} \right)\left( {40 - 0,25x} \right) = 1000\left( {100 + x} \right)\left( {40 - 0,25x} \right) = 1000\left( {4000 + 15x - 0,25{x^2}} \right)\]

Đạo hàm \(R' = 0\), ta được \(R' = 1000\left( {15 - 0,5x} \right) = 0 \Leftrightarrow x = 30.{\rm{ }}\)

Vì tập xác định của \(R\) là khoảng đóng [0; 160] nên \(R\) đạt cực đại tại \(x = 30\) hoặc tại các điểm đầu mút của đoạn [0; 160].

Ta có: \[R\left( 0 \right) = 4000000;\,\,R\left( {30} \right) = 4225000\,;\,\,R\left( {160} \right) = 0\]

Vậy doanh thu tối đa khi \(x = 30\). Điều này tương ứng với 30 lần giảm \(0,25\$ \), tức là cước thuê bao hàng tháng là \(40\$  - 7,5\$  = 32,5\$ \).

Số thuê bao tại mức cước này là \(100000 + 30.\left( {1000} \right) = 130000\).