Câu hỏi:

12/08/2025 24 Lưu

Đa thức thu gọn trong các đa thức dưới dây là

A. \(\frac{1}{3}{x^2}y - xyz - {x^2}y.\) 

B. \(\frac{1}{3}{x^2}y - xyz - zxy.\)

C. \( - 2x{y^2} + \frac{2}{5}y - 4{y^2}x.\)     
D. \(\frac{3}{2}x{y^2} + 3{y^2}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Xét các đáp án, ta có:

• \(\frac{1}{3}{x^2}y - xyz - {x^2}y = \left( {\frac{1}{3} - 1} \right){x^2}y - xyz = \frac{{ - 2}}{3}{x^2}y - xyz\). Do đó, đa thức ở đáp án A chưa thu gọn.

• \(\frac{1}{3}{x^2}y - xyz - zxy = \frac{1}{3}{x^2}y - xyz - xyz = \frac{1}{3}{x^2}y - 2xyz.\) Do đó, đa thức ở đáp án B chưa thu gọn.

• \( - 2x{y^2} + \frac{2}{5}y - 4{y^2}x = \frac{2}{5}y + 4x{y^2} - 2x{y^2} = \frac{2}{5}y + 2x{y^2}\). Do đó, đa thức ở đáp án C chưa thu gọn.

• Đa thức \(\frac{3}{2}x{y^2} + 3{y^2}\) là đa thức thu gọn vì không có hai hạng tử nào đồng dạng.

Vậy chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(0\)

Ta có: \(P = xyz + {x^2}{y^2}{z^2} + {x^3}{y^3}{z^3} + ... + {x^{2019}}{y^{2019}}{z^{2019}} + {x^{2020}}{y^{2020}}{z^{2020}}\).

Thay \(x = 1;y = 1;z =  - 1,\) ta được:

\(P = 1.1.\left( { - 1} \right) + {1^2}{.1^2}.{\left( { - 1} \right)^2} + {1^3}{.1^3}.{\left( { - 1} \right)^3} + ... + {1^{2019}}{.1^{2019}}.{\left( { - 1} \right)^{2019}} + {1^{2020}}{.1^{2020}}.{\left( { - 1} \right)^{2020}}\)

\(P =  - 1 + 1 + \left( { - 1} \right) + ... + \left( { - 1} \right) + 1\)

Nhận thấy đa thức \(P\) chứa 2020 hạng tử, trong đó có \(1010\) hạng tử mũ chẵn và \(1010\) hạng tử mũ lẻ.

Do đó, \(P =  - 1 + 1 + \left( { - 1} \right) + ... + \left( { - 1} \right) + 1\) có 1010 số hạng \( - 1\) và 1010 số hạng 1.

Suy ra \(P =  - 1 + 1 + \left( { - 1} \right) + ... + \left( { - 1} \right) + 1 =  - 1.1010 + 1.1010 =  - 1010 + 1010 = 0\).

Vậy với \(x = 1;y = 1;z =  - 1\) thì \(P = 0.\)

Câu 2

A. \(9xy{\rm{ }}\left( {{{\rm{m}}^2}} \right).\)     

B. \(16xy{\rm{ }}\left( {{{\rm{m}}^2}} \right).\)    
C. \(4xy{\rm{ }}\left( {{{\rm{m}}^2}} \right).\)      
D. \(13xy{\rm{ }}\left( {{{\rm{m}}^2}} \right).\)

Lời giải

Đáp án đúng là: D

Cách 1.

Diện tích phần mảnh đất hình chữ nhật \(ABCD\) là: \(3x \cdot 3y = 9xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

Diện tích phần mảnh đất hình chữ nhật \(EFGC\) là: \(4x \cdot y = 4xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

Vậy diện tích phần mảnh đất đã cho là: \(9xy + 4xy = 13xy{\rm{ }}\left( {{{\rm{m}}^2}} \right).\)

Cách 2.

Chiều dài của hình chữ nhật \(HFGD\)là: \(3y + y = 4y{\rm{ }}\left( {\rm{m}} \right)\).

Diện tích hình chữ nhật \(HFGD\) là: \(4x \cdot 4y = 16xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

Chiều rộng của mảnh đất \(HEBA\) là: \(4x - 3x = x{\rm{ }}\left( {\rm{m}} \right)\).

Diện tích hình chữ nhật \(HEBA\) là: \(x \cdot 3y = 3xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

Diện tích của mảnh đất đã cho là: \(16xy - 3xy = 13xy{\rm{ }}\left( {{{\rm{m}}^2}} \right).\)

Câu 3

A. \(6.\)  

B. \(2.\)  
C. \(5.\) 
D. \(3.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{3}{{2x}} + 3{y^2}.\)  

B. \(4x + \frac{1}{y}.\)   
C. \( - 2x + \frac{2}{{5x}}y.\)                
D. \(\frac{3}{2}x + 4y.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP