Tính giá trị của biểu thức \(P = \frac{{{x^2} - 1}}{{x + 5}} \cdot \frac{{2x + 10}}{{{x^2} - x}}\) với \(x = 99.\) (Kết quả viết dưới dạng số thập phân, làm tròn đến hàng phần trăm)
Quảng cáo
Trả lời:

Đáp án: 2,02
Ta có: \(P = \frac{{{x^2} - 1}}{{x + 5}} \cdot \frac{{2x + 10}}{{{x^2} - x}}\)
\( = \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{x + 5}} \cdot \frac{{2\left( {x + 5} \right)}}{{x\left( {x - 1} \right)}}\)
\( = \frac{{2\left( {x + 1} \right)}}{x}\).
Thay \(x = 99,\) ta có: \(P = \frac{{2 \cdot \left( {99 + 1} \right)}}{{99}} = \frac{{2 \cdot 100}}{{99}} = \frac{{200}}{{99}} \approx 2,02\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Ta có: \(\frac{{\left( {x - 3} \right)\left( {x + 3} \right)}}{{3x}} \cdot \frac{{6x}}{{{{\left( {x - 3} \right)}^2}}} = \frac{{\left( {x - 3} \right)\left( {x + 3} \right) \cdot 6x}}{{3x \cdot \left( {x - 3} \right) \cdot \left( {x - 3} \right)}} = \frac{{2\left( {x + 3} \right)}}{{x - 3}}\).
Lời giải
Đáp án: 1,4
Vận tốc tàu hỏa là \(\frac{s}{a}\) (km/h).
Vận tốc ô tô là \(\frac{s}{b}\) (km/h).
Vận tốc tàu hỏa gấp vận tốc ô tô là: \(\frac{s}{a}:\frac{s}{b} = \frac{s}{a}.\frac{b}{s} = \frac{b}{a}\).
Do đó, \(\frac{b}{a} = \frac{7}{5} = 1,4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.