Câu hỏi:

19/08/2025 27 Lưu

Tính giá trị của biểu thức \(P = \frac{{{x^2} - 1}}{{x + 5}} \cdot \frac{{2x + 10}}{{{x^2} - x}}\) với \(x = 99.\) (Kết quả viết dưới dạng số thập phân, làm tròn đến hàng phần trăm)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: 2,02

Ta có: \(P = \frac{{{x^2} - 1}}{{x + 5}} \cdot \frac{{2x + 10}}{{{x^2} - x}}\)

             \( = \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{x + 5}} \cdot \frac{{2\left( {x + 5} \right)}}{{x\left( {x - 1} \right)}}\)

             \( = \frac{{2\left( {x + 1} \right)}}{x}\).

Thay \(x = 99,\) ta có: \(P = \frac{{2 \cdot \left( {99 + 1} \right)}}{{99}} = \frac{{2 \cdot 100}}{{99}} = \frac{{200}}{{99}} \approx 2,02\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: B

Ta có: \(\frac{{\left( {x - 3} \right)\left( {x + 3} \right)}}{{3x}} \cdot \frac{{6x}}{{{{\left( {x - 3} \right)}^2}}} = \frac{{\left( {x - 3} \right)\left( {x + 3} \right) \cdot 6x}}{{3x \cdot \left( {x - 3} \right) \cdot \left( {x - 3} \right)}} = \frac{{2\left( {x + 3} \right)}}{{x - 3}}\).

Lời giải

Đáp án: 1,4

Vận tốc tàu hỏa là \(\frac{s}{a}\) (km/h).

Vận tốc ô tô là \(\frac{s}{b}\) (km/h).

Vận tốc tàu hỏa gấp vận tốc ô tô là: \(\frac{s}{a}:\frac{s}{b} = \frac{s}{a}.\frac{b}{s} = \frac{b}{a}\).

Do đó, \(\frac{b}{a} = \frac{7}{5} = 1,4\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP