Biết rằng giá trị của biểu thức \(A = \frac{{{5^2} - 1}}{{{3^2} - 1}}:\frac{{{9^2} - 1}}{{{7^2} - 1}}:\frac{{{{13}^2} - 1}}{{{{11}^2} - 1}}:...:\frac{{{{57}^2} - 1}}{{{{55}^2} - 1}}\) là một phân số tối giản có dạng \(\frac{a}{b}\). Tính \(b - a.\)
Biết rằng giá trị của biểu thức \(A = \frac{{{5^2} - 1}}{{{3^2} - 1}}:\frac{{{9^2} - 1}}{{{7^2} - 1}}:\frac{{{{13}^2} - 1}}{{{{11}^2} - 1}}:...:\frac{{{{57}^2} - 1}}{{{{55}^2} - 1}}\) là một phân số tối giản có dạng \(\frac{a}{b}\). Tính \(b - a.\)
Quảng cáo
Trả lời:
Đáp án: 20
Ta có: \(A = \frac{{{5^2} - 1}}{{{3^2} - 1}}:\frac{{{9^2} - 1}}{{{7^2} - 1}}:\frac{{{{13}^2} - 1}}{{{{11}^2} - 1}}:...:\frac{{{{57}^2} - 1}}{{{{55}^2} - 1}}\)
\( = \frac{{\left( {5 - 1} \right)\left( {5 + 1} \right)}}{{\left( {3 - 1} \right)\left( {3 + 1} \right)}} \cdot \frac{{\left( {7 - 1} \right)\left( {7 + 1} \right)}}{{\left( {9 - 1} \right)\left( {9 + 1} \right)}} \cdot \frac{{\left( {11 - 1} \right)\left( {11 + 1} \right)}}{{\left( {13 - 1} \right)\left( {13 + 1} \right)}} \cdot ... \cdot \frac{{\left( {55 - 1} \right)\left( {55 + 1} \right)}}{{\left( {57 - 1} \right)\left( {57 + 1} \right)}}\)
\( = \frac{{4 \cdot 6}}{{2 \cdot 4}} \cdot \frac{{6 \cdot 8}}{{8 \cdot 10}} \cdot \frac{{10 \cdot 12}}{{12 \cdot 14}} \cdot .... \cdot \frac{{54 \cdot 56}}{{56 \cdot 58}}\)
\( = \frac{{6 \cdot 6}}{{2 \cdot 58}} = \frac{9}{{29}}\).
Do đó, \(\frac{a}{b} = \frac{9}{{29}}\) hay \(a = 9;b = 29.\)
Vậy \(b - a = 29 - 9 = 20.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Ta có: \(\frac{{\left( {x - 3} \right)\left( {x + 3} \right)}}{{3x}} \cdot \frac{{6x}}{{{{\left( {x - 3} \right)}^2}}} = \frac{{\left( {x - 3} \right)\left( {x + 3} \right) \cdot 6x}}{{3x \cdot \left( {x - 3} \right) \cdot \left( {x - 3} \right)}} = \frac{{2\left( {x + 3} \right)}}{{x - 3}}\).
Lời giải
a) Sai
Điều kiện xác định của \(P\) là \(x + 1 \ne 0;{\rm{ }}1 - x \ne 0;{\rm{ }}x - 2 \ne 0\) và \({x^2} - 1 \ne 0\).
Suy ra \(x \ne \pm 1\) và \(x \ne 2\).
b) Đúng
Với \(x \ne \pm 1\), \(x \ne 2\) ta có: \(P = \left( {\frac{x}{{x + 1}} - \frac{1}{{1 - x}} + \frac{1}{{1 - {x^2}}}} \right):\frac{{x - 2}}{{{x^2} - 1}}\)
\( = \left[ {\frac{{x\left( {1 - x} \right)}}{{\left( {x + 1} \right)\left( {1 - x} \right)}} - \frac{{1 \cdot \left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {1 - x} \right)}} + \frac{1}{{\left( {x + 1} \right)\left( {1 - x} \right)}}} \right]:\frac{{x - 2}}{{{x^2} - 1}}\)
\( = \frac{{x - {x^2} - x - 1 + 1}}{{\left( {x + 1} \right)\left( {1 - x} \right)}} \cdot \frac{{\left( {x + 1} \right)\left( {x - 1} \right)}}{{x - 2}}\)
\( = \frac{{ - {x^2}}}{{\left( {x + 1} \right)\left( {1 - x} \right)}} \cdot \frac{{\left( {x + 1} \right)\left( {x - 1} \right)}}{{x - 2}}\)
\( = \frac{{{x^2}}}{{x - 2}}\).
c) Đúng
Với \(\left| {2x - 1} \right| = 3\), ta có:
TH1. \(2x - 1 = 3\) suy ra \(2x = 4\) nên \(x = 2\).
TH2. \(2x - 1 = - 3\) suy ra \(2x = - 2\) nên \(x = - 1\).
Vì điều kiện xác định của \(P\) là \(x \ne \pm 1\) và \(x \ne 2\).
Nên \(P\) không xác định khi \(\left| {2x - 1} \right| = 3\).
d) Đúng
Với \(x > 2\) thì \(x - 2 > 0\).
Ta có: \(P - 8 = \frac{{{x^2}}}{{x - 2}} - 8 = \frac{{{x^2} - 8x + 16}}{{x - 2}} = \frac{{{{\left( {x - 4} \right)}^2}}}{{x - 2}}\).
Nhận thầy \({\left( {x - 4} \right)^2} \ge 0\) với mọi \(x.\)
Do đó, \(\frac{{{{\left( {x - 4} \right)}^2}}}{{x - 2}} \ge 0\) hay \(P - 8 \ge 0\) nên \(P \ge 8\) với \(x > 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.