Tính giá trị của đơn thức \(C = \frac{1}{3} \cdot {\left( { - 6{x^2}y} \right)^2} \cdot \left( {\frac{1}{2}{x^3}y} \right)\) tại \(x = 1,y = - 1\).
Quảng cáo
Trả lời:

Lời giải
Đáp án: \( - 6\)
Ta có: \(C = \frac{1}{3} \cdot {\left( { - 6{x^2}y} \right)^2} \cdot \left( {\frac{1}{2}{x^3}y} \right) = \frac{1}{3} \cdot 36 \cdot {x^4}{y^2} \cdot \frac{1}{2}{x^3}y = 6{x^7}{y^3}\).
Thay \(x = 1,y = - 1\), ta được: \(C = {6.1^7} \cdot {\left( { - 1} \right)^3} = - 6\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Đúng.
Thể tích của bể bơi thứ nhất là: \(1,4 \cdot x \cdot y = 1,4xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\).
b) Đúng.
Diện tích đáy của bể bơi thứ nhất là: \(x \cdot y = xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Mà diện tích đáy của bê bơi thứ hai gấp 3 lần diện tích đáy của bể bơi thứ nhất.
Do đo, diện tích đáy của bể bơi thứ hai là: \(3xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\).
c) Sai.
Thể tích của bể bơi thứ hai là: \(1,6 \cdot 3xy = 4,8xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\).
Vì \(4,8 < 5\) nên \(4,8xy < 5xy\).
Do đó, thể tích của bể bơi thứ hai nhỏ hơn \(5xy{\rm{ }}\left( {{{\rm{m}}^3}} \right).\)
d) Đúng.
Tổng thể tích hai bể bơi là: \(4,8xy + 1,4xy = 6,2xy{\rm{ }}\left( {{{\rm{m}}^3}} \right)\).
Thể tích nước cần bơm đầy hai bể bơi chính bằng tổng thể tích của của hai bể bơi và bằng \(6,2xy{\rm{ }}\left( {{{\rm{m}}^3}} \right).\)
Lời giải
Đáp án đúng là: D
Cách 1.
Diện tích phần mảnh đất hình chữ nhật \(ABCD\) là: \(3x \cdot 3y = 9xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Diện tích phần mảnh đất hình chữ nhật \(EFGC\) là: \(4x \cdot y = 4xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Vậy diện tích phần mảnh đất đã cho là: \(9xy + 4xy = 13xy{\rm{ }}\left( {{{\rm{m}}^2}} \right).\)
Cách 2.
Chiều dài của hình chữ nhật \(HFGD\)là: \(3y + y = 4y{\rm{ }}\left( {\rm{m}} \right)\).
Diện tích hình chữ nhật \(HFGD\) là: \(4x \cdot 4y = 16xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Chiều rộng của mảnh đất \(HEBA\) là: \(4x - 3x = x{\rm{ }}\left( {\rm{m}} \right)\).
Diện tích hình chữ nhật \(HEBA\) là: \(x \cdot 3y = 3xy{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Diện tích của mảnh đất đã cho là: \(16xy - 3xy = 13xy{\rm{ }}\left( {{{\rm{m}}^2}} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.