Câu hỏi:

29/09/2025 6 Lưu

Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 2024;2024} \right]\) để hàm số \(y = \sqrt {{x^2} + 1} - mx - 1\) đồng biến trên \(\mathbb{R}\).

A. \(2024\).                          
B. \(2019\).                        
C. \(2020\).                                
D. \(0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

TXĐ: \(D = \mathbb{R}\).

Có \(y = \sqrt {{x^2} + 1}  - mx - 1 \Rightarrow y' = \frac{x}{{\sqrt {{x^2} + 1} }} - m\).

Theo yêu cầu bài toán: \(y' = \frac{x}{{\sqrt {{x^2} + 1} }} - m \ge 0{\rm{, }}\forall x \in \mathbb{R}\)\( \Leftrightarrow m \le \frac{x}{{\sqrt {{x^2} + 1} }},{\rm{ }}\forall x \in \mathbb{R}{\rm{ }}\left( 1 \right)\).

Xét hàm số \(g\left( x \right) = \frac{x}{{\sqrt {{x^2} + 1} }}\) với \[x \in \mathbb{R}\]. Ta có \(g'\left( x \right) = \frac{1}{{\sqrt {{x^2} + 1} \left( {{x^2} + 1} \right)}} > 0,{\rm{ }}\forall x \in \mathbb{R}\).

Bảng biến thiên

Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 2024;2024} \right]\) để hàm số \(y = \sqrt {{x^2} + 1}  - mx - 1\) đồng biến trên \(\mathbb{R}\). A. \(2024\).	B. \(2019\).	C. \(2020\).	D. \(0\). (ảnh 1)

Từ \(\left( 1 \right) \Rightarrow m \le  - 1\) mà \(\left\{ \begin{array}{l}m \in \left[ { - 2024;2024} \right]\\m \in \mathbb{Z}\end{array} \right.\) nên có 2024 giá trị nguyên.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai

b) Đúng

c) Đúng

d) Sai

 

a) Hàm số \(y = f(x)\) đồng biến trên các khoảng \(( - \infty ; - 1)\) và \((1; + \infty ).\)

b) Giá trị cực đại là y = 3, giá trị cực tiểu là y = –1. Do đó tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho là \(3 - 1 = 2.\)

c) Hàm số  \(y = f(x)\)có hai cực trị là \(x =  \pm 1.\)

d) Gọi \[d:y = {\rm{ax}} + b\] là đường thẳng qua hai điểm cực trị \[A( - 1;3),B(1; - 1).\]

\[A,B \in d \Rightarrow \left\{ \begin{array}{l} - a + b = 3\\a + b =  - 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a =  - 2\\b = 1\end{array} \right. \Rightarrow d:y =  - 2x + 1\]

Lời giải

a) Đúng:  Ta có \(y' = {x^2} + 2\left( {m + 1} \right)x + {m^2} + 2m\). Do \(\Delta ' = {b'^2} - ac = {\left( {m + 1} \right)^2} - \left( {{m^2} + 2m} \right) = 1 > 0\) nên phương trình có hai nghiệm phân biệt

Nên hàm số luôn có hai điểm cực trị.

b) Đúng: Ta có \(y' = {x^2} + 2\left( {m + 1} \right)x + {m^2} + 2m\). Do \(\Delta ' = {b'^2} - ac = {\left( {m + 1} \right)^2} - \left( {{m^2} + 2m} \right) = 1 > 0\) nên phương trình có hai nghiệm phân biệt \({x_1} =  - m\) và \({x_2} =  - m - 2\).

Với mọi m hàm số luôn có hai điểm cực trị. (ảnh 1)

Hàm   số luôn nghịch biến trên khoảng \(\left( { - m - 2; - m} \right)\).

Ta có: \( - m - ( - m - 2) = 2\) 

c) Đúng: Ta có bảng biến thiên

Với mọi m hàm số luôn có hai điểm cực trị. (ảnh 2)

Từ bảng biến thiên, suy ra không tồn tại giá trị của tham số \(m\) để hàm số đồng biến trên \(\mathbb{R}\).

d) Sai: Bảng biến thiên

Với mọi m hàm số luôn có hai điểm cực trị. (ảnh 3)

Từ bảng biến thiên, suy ra hàm số nghịch biến trên khoảng \(\left( { - 1;\,1} \right)\) khi và chỉ khi

\(\left\{ \begin{array}{l} - m - 2 \le  - 1\\ - m \ge 1\end{array} \right. \Leftrightarrow m =  - 1\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP