Quảng cáo
Trả lời:

Hàm số \(y = f\left( x \right) = x - 5 + \frac{1}{x}\) luôn xác định trên khoảng \(\left( {0;\; + \infty } \right).\)
Ta có \(y' = 1 - \frac{1}{{{x^2}}} \Rightarrow y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1 \notin \left( {0;\, + \infty } \right)\end{array} \right.\).
BBT của hàm số \(y = f\left( x \right) = x - 5 + \frac{1}{x}\) trên khoảng \(\left( {0;\; + \infty } \right)\)
Vậy \(\mathop {\min }\limits_{\left( {0;\, + \infty } \right)} y = y\left( 1 \right) = - 3\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Dựa vào đồ thị ta có \(\mathop {max}\limits_{{\rm{[}} - 1;2]} y = 2\)
Lời giải
Đáp số: \(0,37\)
- Hàm số \(g(x) = \frac{{\ln x}}{x}\) liên tục trên đoạn \([1;4]\)
Ta có: \({g^\prime }(x) = \frac{{1 - \ln x}}{{{x^2}}}\). Khi đó, trên khoảng \((1;4),{g^\prime }(x) = 0\) khi \(x = e\).
\(g(1) = 0,g(e) = \frac{1}{e},g(4) = \frac{{\ln 4}}{4} = \frac{{\ln 2}}{2}\).
Vậy \(\mathop {\max }\limits_{\left[ {1;4} \right]} g(x) = \frac{1}{e},\mathop {\min }\limits_{\left[ {1;4} \right]} g(x) = 0 \Rightarrow \mathop {\max }\limits_{\left[ {1;4} \right]} g(x) + \mathop {\min }\limits_{\left[ {1;4} \right]} g(x) = \frac{1}{e} \approx 0,37\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.