Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Khi đó hàm số \(y = f\left( x \right)\) là hàm số nào trong các hàm số sau?


Quảng cáo
Trả lời:
Từ đồ thị hàm số ta có:
+) Tập xác định \(D = \mathbb{R}\) nên đáp án A, B, D bị loại.
+) Đồ thị hàm số \(y = \frac{{{x^2} + 2x - 1}}{{{x^2} + 1}}\) có đường tiệm cận ngang \(y = 1\) vì
\(\begin{array}{l}\mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} + 2x - 1}}{{{x^2} + 1}} = \mathop {\lim }\limits_{x \to + \infty } \left( {1 + \frac{{2x - 2}}{{{x^2} + 1}}} \right) = 1.\\\mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} + 2x - 1}}{{{x^2} + 1}} = \mathop {\lim }\limits_{x \to - \infty } \left( {1 + \frac{{2x - 2}}{{{x^2} + 1}}} \right) = 1.\end{array}\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} + 2\left( {m - 1} \right)x + {m^2} - 2}}\] có đúng hai đường tiệm cận đứng khi và chỉ khi phương trình \[f\left( x \right) = {x^2} + 2\left( {m - 1} \right)x + {m^2} - 2 = 0\] có đúng 2 nghiệm phân biệt khác 1\[ \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\f\left( 1 \right) \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {m - 1} \right)^2} - \left( {{m^2} - 2} \right) > 0\\1 + 2\left( {m - 1} \right) + {m^2} - 2 \ne 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l} - 2m + 3 > 0\\{m^2} + 2m - 3 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < \frac{3}{2}\\m \ne 1\\m \ne - 3\end{array} \right.\].
Do \(\left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left[ { - 2025;2025} \right]\end{array} \right.\) nên \(m \in \left\{ { - 2025, - 2024..., - 4, - 2, - 1,0} \right\}\)
Vậy có 2025 giá trị nguyên của \(m\) thỏa mãn yêu cầu bài toán
Đáp án: 2025
Lời giải
a) Sai
Có \[\mathop {\lim }\limits_{x \to {1^ + }} f(x) = 4;\mathop {\lim }\limits_{x \to {1^ - }} f(x) = 2\]. Vậy đồ thị hàm số không có đường tiệm cận đứng.
b) Đúng
Có \[\mathop {\lim }\limits_{x \to + \infty } f(x) = 6;\mathop {\lim }\limits_{x \to - \infty } f(x) = - \infty \]. Vậy đồ thị hàm số có tiệm cận ngang \[y = 6\]
c) Sai
Đồ thị hàm số không có tiệm cận đứng và tiệm cận ngang \[y = 6\]. Vậy tổng số đường tiệm cận của đồ thị hàm số đã cho là \[1\].
d) Sai
Có \[\mathop {\lim }\limits_{x \to + \infty } \frac{1}{{f(x) + 2}} = \frac{1}{8};\mathop {\lim }\limits_{x \to - \infty } \frac{1}{{f(x) + 2}} = 0\].
Vậy đồ thị hàm số \[y = \frac{1}{{f(x) + 2}}\] có hai đường tiệm cận ngang là \[y = \frac{1}{8}\] và \[y = 0\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


![Câu 18: Cho hàm số bậc ba \[y = f\left( x \right)\] có đạo hàm liên tục trên \[\mathbb{R}\]. Đồ thị hàm \[y = f\left( x \ri (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/9-1759194921.png)
![Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \[y = \frac{2}{{3f(x) - 2}}\]là (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/15-1759195174.png)
![Câu 22: Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ sau: Đồ thị hàm số\[g\left( x \right){\rm{ }} = \frac{2}{{3f\left( x \right) - 2}}\] có tất cả bao nhiêu đường tiệm cận? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/14-1759195115.png)
![Đồ thị hàm số \[y = \left| {f\left( x \right)} \right|\] có 2 tiệm cận ngang là hai đường thẳng \[y = m\] và \[y = n\]. Tính \(m + n\)? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/12-1759195052.png)