Tiệm cận ngang của đồ thị hàm số \(y = \frac{{5x - 3}}{{2 - x}}\) là đường thẳng có phương trình:
Quảng cáo
Trả lời:

Tập xác định \(D = \mathbb{R}\backslash \left\{ 2 \right\}\).
Ta có \(\mathop {\lim }\limits_{x \to \pm \infty } y = - 5 \Rightarrow y = - 5\) là tiệm cận ngang của đồ thị hàm số đã cho.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} + 2\left( {m - 1} \right)x + {m^2} - 2}}\] có đúng hai đường tiệm cận đứng khi và chỉ khi phương trình \[f\left( x \right) = {x^2} + 2\left( {m - 1} \right)x + {m^2} - 2 = 0\] có đúng 2 nghiệm phân biệt khác 1\[ \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\f\left( 1 \right) \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {m - 1} \right)^2} - \left( {{m^2} - 2} \right) > 0\\1 + 2\left( {m - 1} \right) + {m^2} - 2 \ne 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l} - 2m + 3 > 0\\{m^2} + 2m - 3 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < \frac{3}{2}\\m \ne 1\\m \ne - 3\end{array} \right.\].
Do \(\left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left[ { - 2025;2025} \right]\end{array} \right.\) nên \(m \in \left\{ { - 2025, - 2024..., - 4, - 2, - 1,0} \right\}\)
Vậy có 2025 giá trị nguyên của \(m\) thỏa mãn yêu cầu bài toán
Đáp án: 2025
Lời giải
Xét \({f^2}\left( x \right) - 4f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) = 0\\f\left( x \right) = 4\end{array} \right.\).
- Xét \(f\left( x \right) = 0\) có 2 nghiệm \({x_1} < - 1\) và \({x_2} = 1\) là nghiệm bội 2 (do đồ thị hàm số \[y = f\left( x \right)\] tiếp xúc với trục hoành tại \(x = 1\)). Trường hợp này đồ thị hàm số \(g\left( x \right)\) có 2 đường tiệm cận đứng.
- Xét \(f\left( x \right) = 4\) có 2 nghiệm \({x_3} > 1\) và \({x_4} = - 1\) là nghiệm bội 2 (do đồ thị hàm số \[y = f\left( x \right)\]tiếp xúc với đường thẳng \(y = 4\) tại \(x = - 1\)). Trường hợp này đồ thị hàm số \(g\left( x \right)\) có 2 đường tiệm cận đứng.
Vậy đồ thị hàm số \(y = g\left( x \right)\) có 4 tiệm cận đứng.
Đáp án: 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.