Câu hỏi:

30/09/2025 181 Lưu

Cho hàm số \(y = \frac{{ax + b}}{{cx + d}}\,\left( {ad - bc \ne 0;ac \ne 0} \right)\) có đồ thị như hình vẽ bên dưới. Tìm phương trình đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số.

Tìm phương trình đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số. (ảnh 1)

A. \(x = 1,\,y = 1\).       
B. \(x = - 1,\,y = 1\).   
C. \(x = 1,\,y = 2\).                           
D. \(x = 2,\,y = 1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Dựa vào đồ thị hàm số, ta suy ra

- Phương trình đường tiệm cận đứng của đồ thị hàm số: \(x = 1\).

- Phương trình đường tiệm cận ngang của đồ thị hàm số: \(y = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} + 2\left( {m - 1} \right)x + {m^2} - 2}}\] có đúng hai đường tiệm cận đứng khi và chỉ khi phương trình \[f\left( x \right) = {x^2} + 2\left( {m - 1} \right)x + {m^2} - 2 = 0\] có đúng 2 nghiệm phân biệt khác 1\[ \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\f\left( 1 \right) \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {m - 1} \right)^2} - \left( {{m^2} - 2} \right) > 0\\1 + 2\left( {m - 1} \right) + {m^2} - 2 \ne 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l} - 2m + 3 > 0\\{m^2} + 2m - 3 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < \frac{3}{2}\\m \ne 1\\m \ne  - 3\end{array} \right.\].

Do \(\left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left[ { - 2025;2025} \right]\end{array} \right.\) nên \(m \in \left\{ { - 2025, - 2024..., - 4, - 2, - 1,0} \right\}\)

Vậy có 2025 giá trị nguyên của \(m\) thỏa mãn yêu cầu bài toán

Đáp án: 2025

Lời giải

a) Sai

Có \[\mathop {\lim }\limits_{x \to {1^ + }} f(x) = 4;\mathop {\lim }\limits_{x \to {1^ - }} f(x) = 2\]. Vậy đồ thị hàm số không có đường tiệm cận đứng.

b) Đúng

Có \[\mathop {\lim }\limits_{x \to  + \infty } f(x) = 6;\mathop {\lim }\limits_{x \to  - \infty } f(x) =  - \infty \]. Vậy đồ thị hàm số có tiệm cận ngang \[y = 6\]

c) Sai

Đồ thị hàm số không có tiệm cận đứng và tiệm cận ngang \[y = 6\]. Vậy tổng số đường tiệm cận của đồ thị hàm số đã cho là \[1\].

d) Sai

Có \[\mathop {\lim }\limits_{x \to  + \infty } \frac{1}{{f(x) + 2}} = \frac{1}{8};\mathop {\lim }\limits_{x \to  - \infty } \frac{1}{{f(x) + 2}} = 0\].

Vậy đồ thị hàm số \[y = \frac{1}{{f(x) + 2}}\] có hai đường tiệm cận ngang là \[y = \frac{1}{8}\] và \[y = 0\].

Câu 3

A. \(y = {\log _3}x\).    
B. \(y = {e^x}\).         
C. \(y = \frac{{2{x^2} - x + 3}}{{x + 1}}\).                 
D. \(y = \frac{{2{x^2} - 2}}{{{x^2} + 2}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP