Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau

a) Đồ thị hàm số có đường tiệm cận đứng là \[x = 2\]
b) Đồ thị hàm số có đường tiệm cận ngang là \[x = - 1\]
c) Tổng số đường tiệm cận của đồ thị hàm số đã cho là \[2\]
d) Hàm số đồng biến trên \[\mathbb{R}\]
Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau

a) Đồ thị hàm số có đường tiệm cận đứng là \[x = 2\]
b) Đồ thị hàm số có đường tiệm cận ngang là \[x = - 1\]
c) Tổng số đường tiệm cận của đồ thị hàm số đã cho là \[2\]
d) Hàm số đồng biến trên \[\mathbb{R}\]
Quảng cáo
Trả lời:
a) Đúng
Có \[\mathop {\lim }\limits_{x \to {2^ + }} f(x) = - \infty ;\mathop {\lim }\limits_{x \to {2^ - }} f(x) = + \infty \]. Vậy đồ thị hàm số có tiệm cận đứng \[x = 2\]
b) Sai
Có \[\mathop {\lim }\limits_{x \to \pm \infty } f(x) = - 1\]. Vậy đồ thị hàm số có tiệm cận ngang \[y = - 1\]
c) Đúng
Đồ thị hàm số có tiệm cận đứng \[x = 2\] và tiệm cận ngang \[y = - 1\]. Vậy tổng số đường tiệm cận của đồ thị hàm số đã cho là \[2\].
d) Sai
Hàm số đồng biến trên hai khoảng \[( - \infty ;2)\] và \[(2; + \infty )\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} + 2\left( {m - 1} \right)x + {m^2} - 2}}\] có đúng hai đường tiệm cận đứng khi và chỉ khi phương trình \[f\left( x \right) = {x^2} + 2\left( {m - 1} \right)x + {m^2} - 2 = 0\] có đúng 2 nghiệm phân biệt khác 1\[ \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\f\left( 1 \right) \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {m - 1} \right)^2} - \left( {{m^2} - 2} \right) > 0\\1 + 2\left( {m - 1} \right) + {m^2} - 2 \ne 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l} - 2m + 3 > 0\\{m^2} + 2m - 3 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < \frac{3}{2}\\m \ne 1\\m \ne - 3\end{array} \right.\].
Do \(\left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left[ { - 2025;2025} \right]\end{array} \right.\) nên \(m \in \left\{ { - 2025, - 2024..., - 4, - 2, - 1,0} \right\}\)
Vậy có 2025 giá trị nguyên của \(m\) thỏa mãn yêu cầu bài toán
Đáp án: 2025
Lời giải
Xét \({f^2}\left( x \right) - 4f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) = 0\\f\left( x \right) = 4\end{array} \right.\).
- Xét \(f\left( x \right) = 0\) có 2 nghiệm \({x_1} < - 1\) và \({x_2} = 1\) là nghiệm bội 2 (do đồ thị hàm số \[y = f\left( x \right)\] tiếp xúc với trục hoành tại \(x = 1\)). Trường hợp này đồ thị hàm số \(g\left( x \right)\) có 2 đường tiệm cận đứng.
- Xét \(f\left( x \right) = 4\) có 2 nghiệm \({x_3} > 1\) và \({x_4} = - 1\) là nghiệm bội 2 (do đồ thị hàm số \[y = f\left( x \right)\]tiếp xúc với đường thẳng \(y = 4\) tại \(x = - 1\)). Trường hợp này đồ thị hàm số \(g\left( x \right)\) có 2 đường tiệm cận đứng.
Vậy đồ thị hàm số \(y = g\left( x \right)\) có 4 tiệm cận đứng.
Đáp án: 4
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Câu 18: Cho hàm số bậc ba \[y = f\left( x \right)\] có đạo hàm liên tục trên \[\mathbb{R}\]. Đồ thị hàm \[y = f\left( x \ri (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/9-1759194921.png)

![Câu 22: Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ sau: Đồ thị hàm số\[g\left( x \right){\rm{ }} = \frac{2}{{3f\left( x \right) - 2}}\] có tất cả bao nhiêu đường tiệm cận? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/14-1759195115.png)

![Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \[y = \frac{2}{{3f(x) - 2}}\]là (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/15-1759195174.png)
