Câu hỏi:

30/09/2025 11 Lưu

Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau

a) Đồ thị hàm số có đường tiệm cận đứng là x = 2 (ảnh 1)

a) Đồ thị hàm số có đường tiệm cận đứng là \[x = 2\]

b) Đồ thị hàm số có đường tiệm cận ngang là \[x =  - 1\]

c) Tổng số đường tiệm cận của đồ thị hàm số đã cho là \[2\]

d) Hàm số đồng biến trên \[\mathbb{R}\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

Có \[\mathop {\lim }\limits_{x \to {2^ + }} f(x) =  - \infty ;\mathop {\lim }\limits_{x \to {2^ - }} f(x) =  + \infty \]. Vậy đồ thị hàm số có tiệm cận đứng \[x = 2\]

b) Sai

Có \[\mathop {\lim }\limits_{x \to  \pm \infty } f(x) =  - 1\]. Vậy đồ thị hàm số có tiệm cận ngang \[y =  - 1\]

c) Đúng

Đồ thị hàm số có tiệm cận đứng \[x = 2\] và tiệm cận ngang \[y =  - 1\]. Vậy tổng số đường tiệm cận của đồ thị hàm số đã cho là \[2\].

d) Sai

Hàm số đồng biến trên hai khoảng \[( - \infty ;2)\] và \[(2; + \infty )\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} + 2\left( {m - 1} \right)x + {m^2} - 2}}\] có đúng hai đường tiệm cận đứng khi và chỉ khi phương trình \[f\left( x \right) = {x^2} + 2\left( {m - 1} \right)x + {m^2} - 2 = 0\] có đúng 2 nghiệm phân biệt khác 1\[ \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\f\left( 1 \right) \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {m - 1} \right)^2} - \left( {{m^2} - 2} \right) > 0\\1 + 2\left( {m - 1} \right) + {m^2} - 2 \ne 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l} - 2m + 3 > 0\\{m^2} + 2m - 3 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < \frac{3}{2}\\m \ne 1\\m \ne  - 3\end{array} \right.\].

Do \(\left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left[ { - 2025;2025} \right]\end{array} \right.\) nên \(m \in \left\{ { - 2025, - 2024..., - 4, - 2, - 1,0} \right\}\)

Vậy có 2025 giá trị nguyên của \(m\) thỏa mãn yêu cầu bài toán

Đáp án: 2025

Lời giải

Đồ thị hàm số \(y = f\left( {\left| x \right|} \right)\) được vẽ từ đồ thị hàm số \(y = f\left( x \right)\) bằng cách giữ nguyên phần đồ thị bên phải trục \(Oy\), phần đồ thị phía bên trái trục \(Oy\) bỏ đi, rồi lấy đối xứng phần đồ thị phía bên phải sang qua \(Oy\). Ta được đồ thị hàm số \(y = f\left( {\left| x \right|} \right)\) như hình vẽ bên dưới.

Đồ thị hàm số \(y = f\left( {\left| x \right|} \right)\) có tổng số bao nhiêu đường tiệm cận? (ảnh 2)

Vậy đồ thị hàm số \(y = f\left( {\left| x \right|} \right)\) có tổng số 3 đường tiệm cận

Đáp án: 3

Câu 3

A. \[m \ne 4.\].             
B. \[m \ne - 4.\].         
C. \[m = 4.\].                             
D. \[m = - 4.\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

 Cho đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\] với tham số \[m\]. Xét tính đúng – sai của các phát biểu sau:

a) Với mọi \(m\) đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\] không tiệm cận đứng và tiệm cận ngang.

b) Đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\] có 1 tiệm cận ngang là \[y = 0\].

c) Với \(m =  - 1\) thì đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\] có \(2\) đường tiệm cận đứng.

d) Có ba giá trị của \(m\) đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\] có đúng hai đường tiệm cận.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP