Cho hàm số \[y = f\left( x \right)\] xác định và có đạo hàm trên \[\mathbb{R}\backslash \left\{ { \pm 2} \right\}\]. Hàm số \[f\left( x \right)\] có bảng biến thiên như hình vẽ dưới đây

Xét tính đúng – sai của các phát biểu sau:
a) Đường tiệm cận ngang của đồ thị hàm số \[y = f\left( x \right)\]là đường thẳng \(y = 10\).
b) Một đường tiệm cận đứng của đồ thị hàm số \[y = f\left( x \right)\]là đường thẳng \(x = - 3\).
c) Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \[y = f\left( x \right)\]là 3.
d) Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \[y = \frac{1}{{2f\left( x \right) + 6}}\] là 4.

Xét tính đúng – sai của các phát biểu sau:
a) Đường tiệm cận ngang của đồ thị hàm số \[y = f\left( x \right)\]là đường thẳng \(y = 10\).
b) Một đường tiệm cận đứng của đồ thị hàm số \[y = f\left( x \right)\]là đường thẳng \(x = - 3\).
c) Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \[y = f\left( x \right)\]là 3.
d) Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \[y = \frac{1}{{2f\left( x \right) + 6}}\] là 4.
Quảng cáo
Trả lời:

Xét hàm số \[y = f\left( x \right)\].Từ bảng biến thiên ta có:
+) \[\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = + \infty \], \[\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 10\]. Đồ thị hàm số \[y = f\left( x \right)\] có một tiệm cận ngang là đường thẳng \(y = 10\).
+) \[\mathop {\lim }\limits_{x \to - {2^ - }} f\left( x \right) = - 3\],\[\mathop {\lim }\limits_{x \to - {2^ + }} f\left( x \right) = + \infty \]. Đồ thị hàm số \[y = f\left( x \right)\] có tiệm cận đứng là đường thẳng \(x = - 2\).
+) \[\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = + \infty \],\[\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = - \infty \]. Đồ thị hàm số \[y = f\left( x \right)\]có tiệm cận đứng là đường thẳng \(x = 2\).
Từ đó: a) Đúng; b) Sai; c) Đúng.
Xét hàm số\[y = \frac{1}{{2f\left( x \right) + 6}}\].Đặt \[g\left( x \right) = \frac{1}{{2f\left( x \right) + 6}}\], ta có hàm số xác định trên \[\mathbb{R}\backslash \left\{ { \pm 2;a} \right\}\], trong đó \[f\left( a \right) = - 3\] và \[a \in \left( {2; + \infty } \right)\]. Khi đó ta có
\[\mathop {\lim }\limits_{x \to - \infty } g\left( x \right) = \frac{1}{{2\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) + 6}} = 0\] và \[\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = \frac{1}{{2\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) + 6}} = \frac{1}{{26}}\] nên \[y = 0\] và \[y = \frac{1}{{26}}\] là hai đường tiệm cận ngang.
Mặt khác ta có
\[\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} g\left( x \right) = \frac{1}{{2\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right) + 6}} = + \infty \Rightarrow x = - 2\] là tiệm cận đứng;
\[\mathop {\lim }\limits_{x \to {2^ \pm }} g\left( x \right) = \frac{1}{{2\mathop {\lim }\limits_{x \to {2^ \pm }} f\left( x \right) + 6}} = 0 \Rightarrow x = 2\] không là tiệm cận đứng;
\[\mathop {\lim }\limits_{x \to {a^ + }} g\left( x \right) = \frac{1}{{2\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) + 6}} = + \infty \Rightarrow x = a\] là tiệm cận đứng;
Vậy đồ thị hàm số \[y = \frac{1}{{2f\left( x \right) + 6}}\] có \[4\] đường tiệm cận.
Từ đó: d) Đúng.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} + 2\left( {m - 1} \right)x + {m^2} - 2}}\] có đúng hai đường tiệm cận đứng khi và chỉ khi phương trình \[f\left( x \right) = {x^2} + 2\left( {m - 1} \right)x + {m^2} - 2 = 0\] có đúng 2 nghiệm phân biệt khác 1\[ \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\f\left( 1 \right) \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {m - 1} \right)^2} - \left( {{m^2} - 2} \right) > 0\\1 + 2\left( {m - 1} \right) + {m^2} - 2 \ne 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l} - 2m + 3 > 0\\{m^2} + 2m - 3 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < \frac{3}{2}\\m \ne 1\\m \ne - 3\end{array} \right.\].
Do \(\left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left[ { - 2025;2025} \right]\end{array} \right.\) nên \(m \in \left\{ { - 2025, - 2024..., - 4, - 2, - 1,0} \right\}\)
Vậy có 2025 giá trị nguyên của \(m\) thỏa mãn yêu cầu bài toán
Đáp án: 2025
Câu 2
Lời giải
Ta có \(x + 2 = 0 \Leftrightarrow x = - 2\).
Đồ thị hàm số đã cho có hai đường tiệm cận \( \Leftrightarrow m( - 2) - 8 \ne 0 \Leftrightarrow m \ne - 4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.