Cho đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\] với tham số \[m\]. Xét tính đúng – sai của các phát biểu sau:
a) Với mọi \(m\) đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\] không tiệm cận đứng và tiệm cận ngang.
b) Đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\] có 1 tiệm cận ngang là \[y = 0\].
c) Với \(m = - 1\) thì đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\] có \(2\) đường tiệm cận đứng.
d) Có ba giá trị của \(m\) đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\] có đúng hai đường tiệm cận.
Cho đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\] với tham số \[m\]. Xét tính đúng – sai của các phát biểu sau:
a) Với mọi \(m\) đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\] không tiệm cận đứng và tiệm cận ngang.
b) Đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\] có 1 tiệm cận ngang là \[y = 0\].
c) Với \(m = - 1\) thì đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\] có \(2\) đường tiệm cận đứng.
d) Có ba giá trị của \(m\) đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\] có đúng hai đường tiệm cận.
Quảng cáo
Trả lời:

+) Vì \[\mathop {\lim }\limits_{x \to \pm \infty } y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}} = 0\] nên đồ thị hàm số luôn có 1 tiệm cận ngang là \[y = 0\]với mọi \(m\)
Từ đó: a) Sai; b) Đúng.
+) Với \(m = - 1\) thì đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} + x - 2}}\].
Xét \({x^2} + x - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 2\end{array} \right.\). Vì \(x = 1\)cũng là nghiệm của tử thức nên đồ thị hàm số \(y\) chỉ nhận \(x = - 2\) là tiệm cận đứng. Nên mệnh đề c) Sai.
+) Đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\] có 1 tiệm cận ngang là \[y = 0\].
Đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\] có đúng hai đường tiệm cận.
\( \Leftrightarrow \) Đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} - \left( {2m + 1} \right)x + {m^2} - 3}}\] có đúng 1 tiệm cận đứng.
\( \Leftrightarrow \)Phương trình \[{x^2} - \left( {2m + 1} \right)x + {m^2} - 3 = 0\] có nghiệm kép hoặc phương trình \[{x^2} - \left( {2m + 1} \right)x + {m^2} - 3 = 0\] có hai nghiệm phân biệt trong đó có một nghiệm bằng 1.
\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\Delta = 0}\\{\left\{ {\begin{array}{*{20}{c}}{\Delta > 0}\\{1 - \left( {2m + 1} \right) + {m^2} - 3 = 0}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{{\left( {2m + 1} \right)}^2} - 4\left( {{m^2} - 3} \right) = 0}\\{\left\{ {\begin{array}{*{20}{c}}{{{\left( {2m + 1} \right)}^2} - 4\left( {{m^2} - 3} \right) > 0}\\{{m^2} - 2m - 3 = 0}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = - \frac{{13}}{4}}\\\begin{array}{l}m = 3\\m = - 1\end{array}\end{array}} \right.\].
Vậy có ba giá trị của m thỏa mãn yêu cầu đề bài. Nên mệnh đề d) Đúng.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đồ thị hàm số \[y = \frac{{x - 1}}{{{x^2} + 2\left( {m - 1} \right)x + {m^2} - 2}}\] có đúng hai đường tiệm cận đứng khi và chỉ khi phương trình \[f\left( x \right) = {x^2} + 2\left( {m - 1} \right)x + {m^2} - 2 = 0\] có đúng 2 nghiệm phân biệt khác 1\[ \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\f\left( 1 \right) \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {m - 1} \right)^2} - \left( {{m^2} - 2} \right) > 0\\1 + 2\left( {m - 1} \right) + {m^2} - 2 \ne 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l} - 2m + 3 > 0\\{m^2} + 2m - 3 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < \frac{3}{2}\\m \ne 1\\m \ne - 3\end{array} \right.\].
Do \(\left\{ \begin{array}{l}m \in \mathbb{Z}\\m \in \left[ { - 2025;2025} \right]\end{array} \right.\) nên \(m \in \left\{ { - 2025, - 2024..., - 4, - 2, - 1,0} \right\}\)
Vậy có 2025 giá trị nguyên của \(m\) thỏa mãn yêu cầu bài toán
Đáp án: 2025
Câu 2
Lời giải
Ta có \(x + 2 = 0 \Leftrightarrow x = - 2\).
Đồ thị hàm số đã cho có hai đường tiệm cận \( \Leftrightarrow m( - 2) - 8 \ne 0 \Leftrightarrow m \ne - 4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.