Câu hỏi:

30/09/2025 349 Lưu

Phần III. Câu hỏi trắc nghiệm trả lời ngắn (Thí sinh trả lời từ câu 01 đến câu 06)
Cho \(f\left( x \right)\) là hàm bậc bốn và có bảng biến thiên như hình vẽ
Đồ thị hàm số \(g\left( x \right) = \frac{{\left( {{x^2} - 4} \right)\left( {x - 2} \right)}}{{f\left( x \right) - 1}}\) có bao nhiêu đường tiệm cận ngang? (ảnh 1)
Đồ thị hàm số \(g\left( x \right) = \frac{{\left( {{x^2} - 4} \right)\left( {x - 2} \right)}}{{f\left( x \right) - 1}}\) có bao nhiêu đường tiệm cận ngang?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét phương trình \(f\left( x \right) - 1 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\,\left( {b2} \right)\\x =  - 2\left( {b2} \right)\end{array} \right.\).

Do \(f\left( x \right)\) là hàm số bậc bốn có \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) =  - \infty \) nên \(f\left( x \right) - 1 = a{\left( {x + 2} \right)^2}{\left( {x - 2} \right)^2}\;(a < 0)\).

Khi đó, \(g\left( x \right) = \frac{{\left( {{x^2} - 4} \right)\left( {x - 2} \right)}}{{a{{\left( {x + 2} \right)}^2}{{\left( {x - 2} \right)}^2}}} = \frac{1}{{a\left( {x + 2} \right)}}\).

Do\(\mathop {\lim }\limits_{x \to  + \infty } g\left( x \right) = \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{{a\left( {x + 2} \right)}} = 0\) và \(\mathop {\lim }\limits_{x \to  + \infty } g\left( x \right) = \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{{a\left( {x + 2} \right)}} = 0\), nên \(y = 0\;\) là tiệm cận ngang của đồ thị hàm số.

Vậy đồ thị hàm số\(g(x)\)có 1 đường tiệm cận ngang.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Sai

c) Đúng

d) Sai

a) \(y = \frac{{x + 1}}{{{x^2} - 2x + 6}}\).

TXĐ: \(D = \mathbb{R}\).

\({y^/} = \frac{{{x^2} - 2x + 6 - \left( {2x - 2} \right)\left( {x + 1} \right)}}{{{{\left( {{x^2} - 2x + 6} \right)}^2}}} \Leftrightarrow {y^/} = \frac{{ - {x^2} - 2x + 8}}{{{{\left( {{x^2} - 2x + 6} \right)}^2}}}.\)

Suy ra \({y^/} = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 4\\x = 2\end{array} \right..\) Bảng biến thiên

 Cho hàm số \(y = f\left( x \right) = \frac{{x + 1}}{{{x^2} - 2x + 6}}\) có đồ thị \(\left( C \right)\).  a) [NB]. Hàm số đồng biến trên khoảng \(\left( {0;1} \right)\) (ảnh 1)

Dựa vào bảng biến thiên ta có hàm số đồng biến trên khoảng \(\left( { - 4;2} \right)\). Vậy câu a) đúng.

b) Từ bảng biến thiên suy ra hàm số đạt cực đại tại \(x = 2\). Vậy câu b) sai.

c) \({y^/} = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 4;\,y = \frac{{ - 1}}{{10}}\\x = 2;\,\,y = \frac{1}{2}\end{array} \right.\).

Phương trình đường thẳng đi qua hai điểm cực trị \(A\left( { - 4;\,\frac{{ - 1}}{{10}}} \right)\) và \(B\left( {2;\,\frac{1}{2}} \right)\) là \(\left( \Delta  \right):x - 10y + 3 = 0.\) Theo giả thiết, do \(d \bot \Delta \) nên \(1.\left( {2m + 3} \right) - 10.m = 0 \Leftrightarrow m = \frac{3}{8}.\) Vậy câu c) đúng.

d) Đặt \[t = \cos x - \sqrt 3 \sin x + 1 \Leftrightarrow t = 2\left( {\frac{1}{2}.\cos x - \frac{{\sqrt 3 }}{2}\sin x} \right) + 1 \Leftrightarrow t = 2\cos \left( {x + \frac{\pi }{3}} \right) + 1\]; \(t \in \left[ { - 1;3} \right].\)Ta có \(g\left( t \right) = f\left( t \right) + {m^2} = \frac{{t + 1}}{{{t^2} - 2t + 6}} + {m^2},\,\,\,t \in \left[ { - 1;3} \right] \Rightarrow {g^/}\left( t \right) = \frac{{ - {t^2} - 2t + 8}}{{{{\left( {{t^2} - 2t + 6} \right)}^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l}t =  - 4\,\left( l \right)\\t = 2\,\left( n \right)\end{array} \right..\) Ta tính được \(g\left( { - 1} \right) = {m^2},\,\,\,g\left( 2 \right) = \frac{1}{2} + {m^2},\,\,f\left( 3 \right) = \frac{4}{9} + {m^2}.\) Do đó \(\mathop {\max }\limits_{\left[ { - 1;3} \right]} f\left( t \right) = {m^2} + \frac{1}{2}.\) Theo giả thiết, \({m^2} + \frac{1}{2} > 5 \Leftrightarrow {m^2} > \frac{9}{2} \Leftrightarrow m \in \left( { - \infty ; - \frac{{3\sqrt 2 }}{2}} \right) \cup \left( {\frac{{3\sqrt 2 }}{2}; + \infty } \right).\) Kết hợp với \(m\) là số nguyên và \(m \in \left[ { - 2;2028} \right]\) ta suy ra có \(2026\) giá trị \(m\) thỏa mãn yêu cầu bài toán. Vậy câu d) sai.

Lời giải

a) Đúng

b) Sai

c) Đúng

d) Sai

a) Đồ thị \(\left( C \right)\) có đường tiệm cận đứng là \(x = 1.\) Vậy câu a) đúng.

b) Ta có \(y = \frac{{{x^2} + 2x - 1}}{{x - 1}} \Leftrightarrow y = x + 3 + \frac{2}{{x - 1}}.\) Suy ra \[\mathop {\lim }\limits_{x \to  - \infty } \left[ {\left( {x + 3 + \frac{2}{{x - 1}}} \right) - \left( {x + 3} \right)} \right] = \mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{x - 1}} = 0\] và \[\mathop {\lim }\limits_{x \to  + \infty } \left[ {\left( {x + 3 + \frac{2}{{x - 1}}} \right) - \left( {x + 3} \right)} \right] = \mathop {\lim }\limits_{x \to  + \infty } \frac{2}{{x - 1}} = 0\]. Dẫn đến \(y = x + 3\) là tiệm cận xiên của đồ thị \(\left( C \right)\). Vậy câu b) sai.

c) \(M\left( {x;y} \right) \in \left( C \right):y = x + 3 + \frac{2}{{x - 1}}\) có tọa độ nguyên khi \(\left\{ \begin{array}{l}x \in \mathbb{Z}\\y \in \mathbb{Z}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \in \mathbb{Z}\\2 \vdots \left( {x - 1} \right)\end{array} \right.\). Từ đó

\(\left[ \begin{array}{l}x - 1 = 2\\x - 1 =  - 2\\x - 1 = 1\\x - 1 =  - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 3;\,\,y = 7\,\\x =  - 1;\,\,y = 1\\x = 2;\,\,y = 7\\x = 0;\,\,y = 1\end{array} \right..\) Dẫn đến đồ thị \(\left( C \right)\) có đúng 4 điểm có tọa độ nguyên. Vậy câu c) đúng.

d) Phương trình hoành độ \(mx - m = \frac{{{x^2} + 2x - 1}}{{x - 1}}\,\,\,\left( {x \ne 1} \right) \Leftrightarrow \left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + m + 1 = 0\) có hai nghiệm phân biệt khác \(1.\)

\(\left\{ \begin{array}{l}m - 1 \ne 0\\{\Delta ^/} = {\left( {m + 1} \right)^2} - \left( {m - 1} \right)\left( {m + 1} \right) > 0\\m - 1 - 2\left( {m + 1} \right) + 1 + m \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 1\\m >  - 1\\m \in \mathbb{R}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 1\\m >  - 1\end{array} \right..\)

Gọi \(A\left( {{x_1};m{x_1} - m} \right),\,\,\,B\left( {{x_2};m{x_2} - m} \right)\)

Ta có \(\overrightarrow {CA}  = \left( {{x_1} + 2;m{x_1} - m} \right),\,\,\,\overrightarrow {CB}  = \left( {{x_2} + 2;m{x_2} - m} \right)\,\). Do tam giác \(ABC\) vuông tại \(C\) nên \(\overrightarrow {CA} .\overrightarrow {CB}  = 0 \Leftrightarrow \left( {{x_1} + 2} \right).\left( {{x_2} + 2} \right) + \left( {m{x_1} - m} \right).\left( {m{x_2} - m} \right) = 0\)\( \Leftrightarrow {x_1}{x_2} + 2\left( {{x_1} + {x_2}} \right) + 4 + {m^2}\left[ {{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1} \right] = 0\)\( \Leftrightarrow \frac{{m + 1}}{{m - 1}} + 4.\frac{{m + 1}}{{m - 1}} + 4 + {m^2}\left( {\frac{{m + 1}}{{m - 1}} - 2.\frac{{m + 1}}{{m - 1}} + 1} \right) = 0\)

\( \Leftrightarrow  - 2{m^2} + 9m + 1 = 0 \Leftrightarrow \left[ \begin{array}{l}{m_1} = \frac{{9 + \sqrt {89} }}{4}\,\left( n \right)\\{m_2} = \frac{{9 - \sqrt {89} }}{4}\,\left( n \right)\end{array} \right..\) Suy ra \({m_1} + {m_2} = \frac{9}{2}.\) Vậy câu d) sai.

Câu 3

PHẦN II: Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(y = \frac{{x + 2}}{{x - 2}}\) có đồ thị là \(\left( C \right)\).

a) [NB]. Đồ thị \(\left( C \right)\) có đường tiệm cận đứng \(x = 2\).

b) [TH]. Đồ thị \(\left( C \right)\) nhận điểm \(I\left( {1;1} \right)\) làm tâm đối xứng.

c) [VD]. Đường thẳng đường thẳng \(d:y = x - 1\) cắt đồ thị \(\left( C \right)\) tại \(2\) điểm phân biệt có độ dài bằng \(4\sqrt 5 .\)

d) [VDC]. Gọi \(M\) là điểm bất kì thuộc đồ thị \(\left( C \right)\). Khi đó tổng khoảng cách từ điểm \(M\) đến hai đường tiệm cận của đồ thị \(\left( C \right)\) đạt giá trị nhỏ nhất bằng \(4.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP