Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 2\,;\,2} \right]\) và có đồ thị như hình vẽ bên dưới.
![Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 2\,;\,2} \right]\) và có đồ thị như hình vẽ bên dưới. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/2-1759223532.png)
Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \(\left[ { - 2\,;\,2} \right]\). Giá trị của \(M + m\) bằng
![Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 2\,;\,2} \right]\) và có đồ thị như hình vẽ bên dưới. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/2-1759223532.png)
Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \(\left[ { - 2\,;\,2} \right]\). Giá trị của \(M + m\) bằng
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương 1 (có lời giải) !!
Quảng cáo
Trả lời:
Chọn D.
Quan sát đồ thị ta thấy: \[\left\{ \begin{array}{l}\mathop {\max }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = 3\\\mathop {\min }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}M = 3\\m = 0\end{array} \right. \Rightarrow M + m = 3 + 0 = 3\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(2\sqrt {17} \)
Xét hàm số \(y = \frac{{2{x^2} + 5x + 4}}{{x + 2}}\)
Điều kiện: \(x \ne - 2\)
Ta có: \(y' = \frac{{2{x^2} + 8x + 6}}{{{{\left( {x + 2} \right)}^2}}}\) \(\left( {x \ne - 2} \right)\)
Cho \(y' = 0\)\( \Rightarrow 2{x^2} + 8x + 6 = 0\)\( \Rightarrow \left[ {\begin{array}{*{20}{c}}{x = - 1 \Rightarrow y = 1}\\{\,\,\,x = - 3 \Rightarrow y = - 7}\end{array}} \right.\)
Đồ thị hàm số có hai điểm cực trị \(A\left( { - 1;1} \right)\) và \(B\left( { - 3; - 7} \right)\)\( \Rightarrow AB = 2\sqrt {17} \)
Câu 2
Lời giải
Chọn A

Tập xác định của hàm số đã cho là \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).
Ta có: \(y' = \frac{{ - 1 - a}}{{{{\left( {x - 1} \right)}^2}}},\,\forall x \ne 1\). Từ đồ thị của hàm số suy ra hàm số đã cho đồng biến trên mỗi khoảng xác định vì vậy \(y' > 0,\,\forall x \ne 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


